我正在尝试将Python列表保存到文件中,然后在我重新启动程序时再次读取它们。问题是我的列表很复杂:即元组中的元组数量不同。
我能想到的最好的办法是最初将列表转换为字符串(可以使用),但是我想不出办法还原更改。
with open(filename, 'w') as f:
f.write(str(objs))
f.close()
这有效,但是如何将其返回列表?
只是为了阐明我对复杂列表的定义是什么,下面是一个示例:
[(((0.0, 0.0, 0.0), (1000.0, 0.0, 0.0), (0.0, 2.0, 0.0), (1000.0, 2.0,
0.0), (0.0, 0.0, 1000.0), (1000.0, 0.0, 1000.0), (0.0, 2.0, 1000.0),
(1000.0, 2.0, 1000.0)), ((0, 2, 3, 1), (4, 6, 7, 5), (1, 3, 7, 5), (4, 6,
2, 0), (2, 6, 7, 3), (4, 0, 1, 5)), ((255, 0, 0), (255, 128, 0), (255, 255,
0), (255, 255, 255), (0, 0, 255), (0, 255, 0)))]
答案 0 :(得分:3)
正如@snakecharmerb所述,您可以使用json
或pickle
。这是一个示例:
代码:
my_list = [(((0.0, 0.0, 0.0), (1000.0, 0.0, 0.0), (0.0, 2.0, 0.0), (1000.0, 2.0,
0.0), (0.0, 0.0, 1000.0), (1000.0, 0.0, 1000.0), (0.0, 2.0, 1000.0),
(1000.0, 2.0, 1000.0)), ((0, 2, 3, 1), (4, 6, 7, 5), (1, 3, 7, 5), (4, 6,
2, 0), (2, 6, 7, 3), (4, 0, 1, 5)), ((255, 0, 0), (255, 128, 0), (255, 255,
0), (255, 255, 255), (0, 0, 255), (0, 255, 0)))]
import json
with open('my_list.json', 'w') as f:
json.dump(my_list, f)
with open('my_list.json','r') as f:
loaded_list = json.load(f)
print('Using json:')
print(loaded_list)
import pickle
with open('my_list.pkl', 'wb') as f:
pickle.dump(my_list, f)
with open('my_list.pkl', 'rb') as f:
loaded_list = pickle.load(f)
print('Using pickle:')
print(loaded_list)
输出:
Using json:
[[[[0.0, 0.0, 0.0], [1000.0, 0.0, 0.0], [0.0, 2.0, 0.0], [1000.0, 2.0, 0.0], [0.0, 0.0, 1000.0], [1000.0, 0.0, 1000.0], [0.0, 2.0, 1000.0], [1000.0, 2.0, 1000.0]], [[0, 2, 3, 1], [4, 6, 7, 5], [1, 3, 7, 5], [4, 6, 2, 0], [2, 6, 7, 3], [4, 0, 1, 5]], [[255, 0, 0], [255, 128, 0], [255, 255, 0], [255, 255, 255], [0, 0, 255], [0, 255, 0]]]]
Using pickle:
[(((0.0, 0.0, 0.0), (1000.0, 0.0, 0.0), (0.0, 2.0, 0.0), (1000.0, 2.0, 0.0), (0.0, 0.0, 1000.0), (1000.0, 0.0, 1000.0), (0.0, 2.0, 1000.0), (1000.0, 2.0, 1000.0)), ((0, 2, 3, 1), (4, 6, 7, 5), (1, 3, 7, 5), (4, 6, 2, 0), (2, 6, 7, 3), (4, 0, 1, 5)), ((255, 0, 0), (255, 128, 0), (255, 255, 0), (255, 255, 255), (0, 0, 255), (0, 255, 0)))]
您会看到json
将元组转换为列表。
答案 1 :(得分:1)
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import KFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.layers import Dense
from tensorflow.python.keras.wrappers.scikit_learn import KerasRegressor
seed = 7
np.random.seed(seed)
dataset=np.loadtxt("N_LANDCOV.csv", delimiter=",")
x=dataset[:,:-1]
y=dataset[:,-1]
y=np.reshape(y, (-1,1))
scaler = MinMaxScaler()
print(scaler.fit(x))
print(scaler.fit(y))
xscale=scaler.transform(x)
yscale=scaler.transform(y)
X_train, X_test, y_train, y_test = train_test_split(xscale, yscale)
model = Sequential()
model.add(Dense(28, input_dim=12, kernel_initializer='normal', activation='relu'))
model.add(Dense(16, activation='relu'))
model.add(Dense(1, activation='linear'))
model.summary()
model.compile(loss='mse', optimizer='adam', metrics=['mse','mae'])
history = model.fit(X_train, y_train, epochs=1000, batch_size=10, verbose=1, validation_split=0.33)
Epoch 1000/1000
30/30 [==============================] - 0s 702us/step - loss: 0.0517 - mean_squared_error: 0.0517 - mean_absolute_error: 0.1988 - val_loss: 0.0357 - val_mean_squared_error: 0.0357 - val_mean_absolute_error: 0.1416
import os
os.environ['KMP_DUPLICATE_LIB_OK']='True'
print(history.history.keys())
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show()
plt.figure(figsize=(200, 200))
函数会将复杂列表/嵌套列表和元组转换为字符串
此外,str
将任何字符串转换为实际的代码段
但是,正如Taras Savchyn所提到的,eval
可能导致SQL注入等等。因此,请改用eval
因此:
ast.literal_eval
希望这可以解决您的问题。您可以评论答案以询问其他任何问题