我正在尝试在Scala中使用json4s解析以下Json,但由于嵌套结构而无法实现:
[
{
"body":"8",
"start":29,
"value":{
"value":8,
"type":"value"
},
"end":30,
"dim":"number",
"latent":false
},
{
"body":"2",
"start":42,
"value":{
"value":2,
"type":"value"
},
"end":43,
"dim":"number",
"latent":false
}
]
使用以下代码,我只能提取第一个案例类,而不能提取嵌套的类:
println(stdout)
val obs = parse(stdout.toString())
val obs2 = parse(stdout.toString()).extract[DucklingList]
println(obs2.list)
以下是上面的输出:
[0m[[0minfo[0m] [0m[{"body":"8","start":29,"value":{"value":8,"type":"value"},"end":30,"dim":"number","latent":false},{"body":"2","start":42,"value":{"value":2,"type":"value"},"end":43,"dim":"number","latent":false}][0m
[0m[[0minfo[0m] [0mList(JObject(List((body,JString(8)), (start,JInt(29)), (value,JObject(List((value,JInt(8)), (type,JString(value))))), (end,JInt(30)), (dim,JString(number)), (latent,JBool(false)))), JObject(List((body,JString(2)), (start,JInt(42)), (value,JObject(List((value,JInt(2)), (type,JString(value))))), (end,JInt(43)), (dim,JString(number)), (latent,JBool(false)))))[0m
[0m[[0minfo[0m] [0mJObject(List((value,JInt(8)), (type,JString(value))))[0m
[0m[[0minfo[0m] [0mDucklingList(List(JObject(List((body,JString(8)), (start,JInt(29)), (value,JObject(List((value,JInt(8)), (type,JString(value))))), (end,JInt(30)), (dim,JString(number)), (latent,JBool(false)))), JObject(List((body,JString(2)), (start,JInt(42)), (value,JObject(List((value,JInt(2)), (type,JString(value))))), (end,JInt(43)), (dim,JString(number)), (latent,JBool(false))))))[0m
我尝试使用json4s提取方法将其与下面列出的案例类和序列化程序一起提取。
case class DucklingValue(
value: Int,
typ: String
)
case class DucklingEntity(
body: String,
start: Int,
end: Int,
value: List[JField],
dim: String,
latent: Boolean
)
case class DucklingList(
list: List[JValue]
)
class DucklingEntitySerializer extends CustomSerializer[DucklingEntity](format => (
{
case JObject(
JField("body", JString(body))
:: JField("start", JInt(start))
:: JField("end", JInt(end))
:: JField("value", JObject(value))
:: JField("dim", JString(dim))
:: JField("latent", JBool(latent))
:: Nil
) => DucklingEntity(body, start.toInt, end.toInt, value, dim, latent)
},
{
case duckling_entity: DucklingEntity =>
JObject(
JField("body", JString(duckling_entity.body))
:: JField("start", JInt(duckling_entity.start))
:: JField("end", JInt(duckling_entity.end))
:: JField("value", JObject(duckling_entity.value))
:: JField("dim", JString(duckling_entity.dim))
:: JField("latent", JBool(duckling_entity.latent))
:: Nil
)
}
))
class DucklingValueSerializer extends CustomSerializer[DucklingValue](format => (
{
case JObject(
JField("value", JInt(value))
:: JField("type", JString(typ))
:: Nil
) => DucklingValue(value.toInt, typ)
},
{
case duckling_value: DucklingValue =>
JObject(
JField("value", JInt(duckling_value.value))
:: JField("type", JString(duckling_value.typ))
:: Nil
)
}
))
class DucklingListSerializer extends CustomSerializer[DucklingList](format => (
{
case JArray(list) => DucklingList(list)
},
{
case duckling_list: DucklingList =>
JArray(duckling_list.list)
}
))
我如何才能将嵌套的序列化案例类DucklingEntity也提取到DucklingList下?
答案 0 :(得分:0)
json4s
将递归地解析嵌套对象,因此您不需要自定义序列化器。
问题在于,当您只需要放置适当的case类时,就已经在反序列化类中放置了JSON
类型(JValue
和JField
)。这是您的类的修改后的版本,无需任何自定义序列化程序即可解析:
case class DucklingValue(
value: Int,
typ: String
)
case class DucklingEntity(
body: String,
start: Int,
end: Int,
value: DucklingValue,
dim: String,
latent: Boolean
)
case class DucklingList(
list: List[DucklingEntity]
)
还要注意,反序列化器是限制性的,因为它们要求字段以您指定的特定顺序出现。最好提取单个字段,如下所示:
case obj: JObject =>
DucklingValue(
(obj \ "value").Extract[Int],
(obj \ "type").Extract[String]
)
这也允许字段以任何顺序排列。使用这种方法还使您可以处理简单的match
表达式无法处理的可选字段等。