我将python 3与conda和tensorflow结合使用,并使用以下代码,以便创建tf.keras.models.sequential并使用tf.keras.optimizer.Adam对其进行优化,并得到以下错误:
from tensorflow.python.keras.models import Sequential
from tensorflow.python.keras.datasets import mnist
from tensorflow.python.keras.optimizers import Adam
from tensorflow.python.keras.layers import Dense, Dropout
from siamese import triplet_loss
model = Sequential()
model.add(Dense(units=100, input_shape=(784,), activation="relu"))
model.compile(loss=triplet_loss.TripletLoss.semihard, optimizer=Adam())
(train_x, train_y), (test_x, test_y) = mnist.load_data()
train_x = train_x.reshape((-1, 784)) / 255.0
print(train_x)
ValueError:优化器必须是tf.train.Optimizer的实例,而不是
我尝试从tf.train导入优化器,但似乎找不到要导入的任何内容...
tf版本为1.12
谢谢
答案 0 :(得分:3)
将代码更改为
时有效model = Sequential()
model.add(Dense(units=100, input_shape=(784,), activation="relu"))
model.compile(loss=triplet_loss.TripletLoss.semihard, optimizer=tf.train.AdamOptimizer(learning_rate=0.005))
答案 1 :(得分:0)
这将适用于Tensorflow 2.x版本
model = Sequential()
model.add(Dense(units=100, input_shape=(784,), activation="relu"))
model.compile(loss=triplet_loss.TripletLoss.semihard, optimizer=tf.compat.v1.train.AdamOptimizer(learning_rate=0.005))