如何将此迭代应用于数据框以对其进行修改?

时间:2019-02-12 22:20:49

标签: python-3.x pandas dataframe

目标是根据条件重命名数据框的列并修改相应列的值。

合并几个数据帧

df1 = pd.DataFrame({'ID': ['Mary', 'Mike', 'Barry', 'Scotty'],'eTIV': [1.12, 2.22, 3.43, 5.43], })
df2 = pd.DataFrame({'ID': ['Mary', 'Mike', 'Barry', 'Scotty'],'Ear_Vol': [5, 6, 7, 8]})
df3 = pd.DataFrame({'ID': ['Mary', 'Mike', 'Barry', 'Scotty'],'Nose': [1, 2, 3, 5], })
df4 = pd.DataFrame({'ID': ['Mary', 'Mike', 'Barry', 'Scotty'],'Eye_Vol': [1, 2, 3, 5], })
df5 = pd.DataFrame({'ID': ['Mary', 'Mike', 'Barry', 'Scotty'],'Finger': [1.3, 2.123, 3.4, 5.5], })

dfs = [df1, df2, df3, df4,df5]

df_final = reduce(lambda left,right: pd.merge(left,right,on='ID'), dfs)

df_final

    ID      eTIV    Ear_Vol Nose    Eye_Vol Finger
0   Mary    1.12    5       1       1       1.300
1   Mike    2.22    6       2       2       2.123
2   Barry   3.43    7       3       3       3.400
3   Scotty  5.43    8       5       5       5.500

更改列名

    df_final.columns = df_final.columns.str.replace(r"_Vol", "_Vol_Adj")

df_final_Adj = pd.DataFrame(数据= df_final,列= df_final.columns) df_final_Adj

ID      eTIV    Ear_Vol_Adj Nose    Eye_Vol_Adj Finger

0玛丽1.12 5 1 1 1.300 1麦克2.22 6 2 2 2.123 2巴里3.43 7 3 3 3.400 3斯科蒂5.43 8 5 5 5.500

更改包含标题“ _Adj”的列的值。

cols = df_final_Adj.columns[df_final_Adj.columns.str.contains('_Adj')].tolist()
print(cols)

['Ear_Vol_Adj', 'Eye_Vol_Adj']

方法1:

df_final_Adj[col] = df_final_Adj[col].div(df_final_Adj['eTIV'], axis=0)

错误:

TypeError: unsupported operand type(s) for /: 'str' and 'int'"

方法2:

for col in cols:
        df_final_Adj[col] = df_final_Adj[col].div(df_final_Adj['eTIV'], axis=0)

错误:

TypeError: unsupported operand type(s) for /: 'str' and 'int'

2 个答案:

答案 0 :(得分:0)

假设OP中显示的图像是在应用功能eTIV_Adjust之前 的数据,这是我的尝试

根据操作说明生成数据

d = [['one', 'two_Volume', 'three', 'four', 'five', 'six', 'four_Volume'],
    [1,1,5,1,5,5,5],
    [1,1,5,1,5,5,5],
    [1,1,5,1,5,5,5],
    [1,1,5,1,5,5,5],
    [1,1,5,1,5,5,5]]

df = pd.DataFrame(d[1:], columns=d[0])
print(df)
   one  two_Volume  three  four  five  six  four_Volume
0    1           1      5     1     5    5            5
1    1           1      5     1     5    5            5
2    1           1      5     1     5    5            5
3    1           1      5     1     5    5            5
4    1           1      5     1     5    5            5

现在,此行if 'Vol' in key:建议您查找包含部分字符串'Vol'的列。您可以使用.str.contains来搜索这些列,而无需使用iterrorws.apply(如@Andy Hayden上面建议的那样)

cols = df.columns[df.columns.str.contains('Vol')].tolist()
print(cols)
['two_Volume', 'four_Volume']

现在,只需将这些列除以名为five的列(请参阅this helpful SO post

df[cols] = df[cols].div(df['five'], axis=0)
print(df)
   one  two_Volume  three  four  five  six  four_Volume
0    1         0.2      5     1     5    5          1.0
1    1         0.2      5     1     5    5          1.0
2    1         0.2      5     1     5    5          1.0
3    1         0.2      5     1     5    5          1.0
4    1         0.2      5     1     5    5          1.0

答案 1 :(得分:0)

此方法有效:

for col in cols:
    df_final_Adj[col] = df_final_Adj[col].div(df_final_Adj['eTIV'], axis=0)
df_final_Adj