我有两个data.frame,其列包含登录号
df 1的子集:
for i in user_list:
username = i
for e in email_ids:
em = e.split("@")[0]
if username == em:
send_email(i,em) """ I need to select the email based on the condition to send email only to the match i.e ravi.teja == ravi.teja send email to ravi.teja@gmail.com or teja.ravi == teja.ravi send email to teja.ravi@gmail.com
can some one help me how to select an email_address if the firstname and the last name in the email id matches the exact string."""
df 2的子集:
var takenMap: MKMapView!
@IBAction func postPressed(_ sender: Any) {
if textView.text != "" && takenImage != nil && userLocation.text != "" {
// Create and save a new job
let newJob = Job(text: textView.text, jobImage: takenImage!, addedByUser: (userLabel?.text)!, userImage: UserImage, location: userLocation.text, map: takenMap.MKMapView)
newJob.save()
}
//MARK:- CLLocationManager Delegates
func locationManager(_ manager: CLLocationManager, didUpdateLocations locations: [CLLocation]) {
if let lastLocation = locations.last {
let geoCoder = CLGeocoder()
let center = CLLocationCoordinate2D(latitude: lastLocation.coordinate.latitude, longitude: lastLocation.coordinate.longitude)
let region = MKCoordinateRegion(center: center, span: MKCoordinateSpan(latitudeDelta: 0.01, longitudeDelta: 0.01))
map.setRegion(region, animated: true)
self.map = takenMap
geoCoder.reverseGeocodeLocation(lastLocation) { (placeMarks, error) in
if error == nil {
if let firstLocation = placeMarks?[0] {
self.locationManager.stopUpdatingLocation()
if let cityName = firstLocation.locality,
let street = firstLocation.thoroughfare {
self.scanLocation = "\(street), \(cityName)"
print("This is the current city name", cityName)
print("this is the current street address", street)
self.takenLocation = self.scanLocation!
self.userLocation.text = self.takenLocation
}
}
}
}
}
}
我想按列var map: String?
init(map: String? = nil) {
self.map = map
ref = Database.database().reference().child("jobs").childByAutoId()
}
init(snapshot: DataSnapshot){
ref = snapshot.ref
if let value = snapshot.value as? [String : Any] {
map = value["location"] as? String
}
}
func save() {
let newPostKey = ref.key
// save jobImage
if let imageData = jobImage?.jpegData(compressionQuality: 0.5) {
let storage = Storage.storage().reference().child("jobImages/\(newPostKey)")
storage.putData(imageData).observe(.success, handler: { (snapshot) in
self.downloadURL = snapshot.metadata?.downloadURL()?.absoluteString
let postDictionary = [
"map" : self.map!
] as [String : Any]
self.ref.setValue(postDictionary)
})
}
}
合并两个数据帧,但是问题是它们不是完全匹配。 sub_df1 <- structure(list(database = "CLO, ArrayExpress, ArrayExpress, ATCC, BCRJ, BioSample, CCLE, ChEMBL-Cells, ChEMBL-Targets, Cosmic, Cosmic, Cosmic, Cosmic-CLP, GDSC, GEO, GEO, GEO, IGRhCellID, LINCS_LDP, Wikidata",
database_accession = "CLO_0009006, E-MTAB-2770, E-MTAB-3610, CRL-7724, 0337, SAMN03471142, SH4_SKIN, CHEMBL3308177, CHEMBL2366309, 687440, 909713, 2159447, 909713, 909713, GSM887568, GSM888651, GSM1670420, SH4, LCL-1280, Q54953204"), .Names = c("database",
"database_accession"), row.names = 2L, class = "data.frame")
中的字符串是sub_df2 <- structure(list(database_accession = "SH4_SKIN", G1 = -1.907138,
G2 = -7.617305, G3 = -3.750553, G4 = 2.615004, G5 = 9.751557), .Names = c("database_accession",
"G1", "G2", "G3", "G4", "G5"), row.names = 101L, class = "data.frame")
中字符串的子字符串。
我曾考虑过使用fuzzyjoin,但很难正确设置匹配算法。
答案 0 :(得分:1)
您可以使用sqldf
包并编写一个查询,将带有like
条件的表连接起来,以测试sub_df1
中的值是否包含sub_df2
中的值。 / p>
library(sqldf)
sqldf('
select *
from sub_df2 two
left join sub_df1 one
on one.database_accession like "%" || two.database_accession || "%"
')
答案 1 :(得分:1)
使用match_fun = str_detect或regex_join()的fuzzyjoin
解决方案:
library(tidyverse); library(fuzzyjoin)
# Load data
sub_df1 <- structure(list(database = "CLO, ArrayExpress, ArrayExpress, ATCC, BCRJ, BioSample, CCLE, ChEMBL-Cells, ChEMBL-Targets, Cosmic, Cosmic, Cosmic, Cosmic-CLP, GDSC, GEO, GEO, GEO, IGRhCellID, LINCS_LDP, Wikidata", database_accession = "CLO_0009006, E-MTAB-2770, E-MTAB-3610, CRL-7724, 0337, SAMN03471142, SH4_SKIN, CHEMBL3308177, CHEMBL2366309, 687440, 909713, 2159447, 909713, 909713, GSM887568, GSM888651, GSM1670420, SH4, LCL-1280, Q54953204"), .Names = c("database", "database_accession"), row.names = 2L, class = "data.frame")
sub_df2 <- structure(list(database_accession = "SH4_SKIN", G1 = -1.907138, G2 = -7.617305, G3 = -3.750553, G4 = 2.615004, G5 = 9.751557), .Names = c("database_accession", "G1", "G2", "G3", "G4", "G5"), row.names = 101L, class = "data.frame")
# Solution
# Using fuzzy_join. Could also use regex_full_join(), which is the wrapper for match_fun = str_detect, mode = "full"
fuzzy_join(sub_df1, sub_df2, match_fun = str_detect, by = "database_accession", mode = "full") %>%
str()
#> 'data.frame': 1 obs. of 8 variables:
#> $ database : chr "CLO, ArrayExpress, ArrayExpress, ATCC, BCRJ, BioSample, CCLE, ChEMBL-Cells, ChEMBL-Targets, Cosmic, Cosmic, Cos"| __truncated__
#> $ database_accession.x: chr "CLO_0009006, E-MTAB-2770, E-MTAB-3610, CRL-7724, 0337, SAMN03471142, SH4_SKIN, CHEMBL3308177, CHEMBL2366309, 68"| __truncated__
#> $ database_accession.y: chr "SH4_SKIN"
#> $ G1 : num -1.91
#> $ G2 : num -7.62
#> $ G3 : num -3.75
#> $ G4 : num 2.62
#> $ G5 : num 9.75
由reprex package(v0.2.1)于2019-03-17创建