我有一些代码,如果我不进行多次分配,而不是跨多个行进行分配,则可以获得10倍的加速。
快速:
onset = pitch_df.loc[idx, 'onset_time']
dur = pitch_df.loc[idx, 'duration']
慢:
onset, dur = pitch_df.loc[idx, ['onset_time', 'duration']]
是否有明显的原因,或者是做我正在做的事情的“熊猫”方式。我想在此处分配代码,以提高代码的可读性(即,我不希望到处都写.loc[...]
)。
这是一个最小的工作示例(此处加速4倍):
import pandas as pd
import numpy as np
from timeit import timeit
df = pd.DataFrame(
{'onset_time': [0, 0, 1, 2, 3, 4],
'pitch': [61, 60, 60, 61, 60, 60],
'duration': [4, 1, 1, 0.5, 0.5, 2]}
).sort_values(['onset_time', 'pitch']).reset_index(drop=True)
def foo():
for pitch, pitch_df in df.groupby('pitch'):
for iloc in range(len(pitch_df)):
idx = pitch_df.index[iloc]
onset = pitch_df.loc[idx, 'onset_time']
dur = pitch_df.loc[idx, 'duration']
note_off = onset + dur
def bar():
for pitch, pitch_df in df.groupby('pitch'):
for iloc in range(len(pitch_df)):
idx = pitch_df.index[iloc]
onset, dur = pitch_df.loc[idx, ['onset_time', 'duration']]
note_off = onset + dur
print(f'foo time: {timeit(foo, number=100)}')
print(f'bar time: {timeit(bar, number=100)}')
下面包含的图像易于阅读。
答案 0 :(得分:1)
正如Poolka在对您的问题的评论中提到的那样,如果您想要标量访问.at
,则开销较小。我不是python专家,但这是一个可能适合您的解决方案:
def foo2():
for pitch, pitch_df in df.groupby('pitch'):
for iloc in range(len(pitch_df)):
idx = pitch_df.index[iloc]
onset, dur = (pitch_df.at[idx, x] for x in ('onset_time', 'duration'))
note_off = onset + dur
foo time: 0.12590176300000167
bar time: 0.47044453300077294
foo2 time: 0.12269815599938738