Pandas Groupby多列-前N

时间:2019-02-08 16:15:29

标签: python pandas pandas-groupby

我有一个有趣的人!我试图找到一个重复的问题,但是没有成功...

我的数据框包含2013-2016年的所有美国和地区,并具有多个属性。

>>> df.head(2)
     state  enrollees  utilizing  enrol_age65  util_age65  year
1  Alabama     637247     635431       473376      474334  2013
2   Alaska      30486      28514        21721       20457  2013

>>> df.tail(2)
     state               enrollees  utilizing  enrol_age65  util_age65  year
214  Puerto Rico          581861     579514       453181      450150  2016
215  U.S. Territories      24329      16979        22608       15921  2016

我想按年份和州进行分组,并显示每年的前3个州(按“注册人”或“利用”-没关系)。

所需输出:

                                       enrollees  utilizing
year state                                                 
2013 California                          3933310    3823455
     New York                            3133980    3002948
     Florida                             2984799    2847574
...
2016 California                          4516216    4365896
     Florida                             4186823    3984756
     New York                            4009829    3874682

到目前为止,我已经尝试了以下方法:

df.groupby(['year','state'])['enrollees','utilizing'].sum().head(3)

哪个仅产生GroupBy对象的前3行:

                 enrollees  utilizing
year state                           
2013 Alabama        637247     635431
     Alaska          30486      28514
     Arizona        707683     683273

我还尝试了lambda函数:

df.groupby(['year','state'])['enrollees','utilizing']\
  .apply(lambda x: np.sum(x)).nlargest(3, 'enrollees')

哪个在GroupBy对象中产生绝对最大的3:

                 enrollees  utilizing
year state                           
2016 California    4516216    4365896
2015 California    4324304    4191704
2014 California    4133532    4011208

我认为这可能与GroupBy对象的索引有关,但是我不确定...任何指导都将不胜感激!

2 个答案:

答案 0 :(得分:1)

然后,您需要对GroupBy对象element.scrollTop = intValue;

进行排序

答案 1 :(得分:1)

好吧,你可以做些不太漂亮的事情。

首先使用set()获取唯一年份列表:

years_list = list(set(df.year))

创建一个虚拟数据框和一个用于连接我过去制作的函数:

def concatenate_loop_dfs(df_temp, df_full, axis=0):
    """
    to avoid retyping the same line of code for every df.
    the parameters should be the temporary df created at each loop and the concatenated DF that will contain all
    values which must first be initialized (outside the loop) as df_name = pd.DataFrame(). """ 

if df_full.empty:
    df_full = df_temp
else:
    df_full = pd.concat([df_full, df_temp], axis=axis)

return df_full

创建虚拟最终df

df_final = pd.DataFrame()

现在,您将循环浏览每一年并总结为新的DF:

for year in years_list:
    # The query function does a search for where
    # the @year means the external variable, in this case the input from loop
    # then you'll have a temporary DF with only the year and sorting and getting top3
    df2 = df.query("year == @year")

    df_temp = df2.groupby(['year','state'])['enrollees','utilizing'].sum().sort_values(by="enrollees", ascending=False).head(3)
    # finally you'll call our function that will keep concating the tmp DFs
    df_final = concatenate_loop_dfs(df_temp, df_final)

完成。

print(df_final)