我们有以下代码(感谢Cody和Alex Tereshenkov):
import pandas as pd
import requests
from bs4 import BeautifulSoup
pd.set_option('display.width', 1000)
pd.set_option('display.max_columns', 50)
url = "https://www.aliexpress.com/store/feedback-score/1665279.html"
s = requests.Session()
r = s.get(url)
soup = BeautifulSoup(r.content, "html.parser")
iframe_src = soup.select_one("#detail-displayer").attrs["src"]
r = s.get(f"https:{iframe_src}")
soup = BeautifulSoup(r.content, "html.parser")
rows = []
for row in soup.select(".history-tb tr"):
#print("\t".join([e.text for e in row.select("th, td")]))
rows.append([e.text for e in row.select("th, td")])
#print
df = pd.DataFrame.from_records(
rows,
columns=['Feedback', '1 Month', '3 Months', '6 Months'],
)
# remove first row with column names
df = df.iloc[1:]
df['Shop'] = url.split('/')[-1].split('.')[0]
pivot = df.pivot(index='Shop', columns='Feedback')
pivot.columns = [' '.join(col).strip() for col in pivot.columns.values]
column_mapping = dict(
zip(pivot.columns.tolist(), [col[:12] for col in pivot.columns.tolist()]))
# column_mapping
# {'1 Month Negative (1-2 Stars)': '1 Month Nega',
# '1 Month Neutral (3 Stars)': '1 Month Neut',
# '1 Month Positive (4-5 Stars)': '1 Month Posi',
# '1 Month Positive feedback rate': '1 Month Posi',
# '3 Months Negative (1-2 Stars)': '3 Months Neg',
# '3 Months Neutral (3 Stars)': '3 Months Neu',
# '3 Months Positive (4-5 Stars)': '3 Months Pos',
# '3 Months Positive feedback rate': '3 Months Pos',
# '6 Months Negative (1-2 Stars)': '6 Months Neg',
# '6 Months Neutral (3 Stars)': '6 Months Neu',
# '6 Months Positive (4-5 Stars)': '6 Months Pos',
# '6 Months Positive feedback rate': '6 Months Pos'}
pivot.columns = [column_mapping[col] for col in pivot.columns]
pivot.to_excel('Report.xlsx')
代码为给定的URL(位于iframe中)提取“反馈历史记录”表,并将所有表数据转换为1行,就像这样:
另一方面,我们在同一个项目文件夹(“ urls.txt”)中有50个网址,如下所示:
https://www.aliexpress.com/store/feedback-score/4385007.html
https://www.aliexpress.com/store/feedback-score/1473089.html
https://www.aliexpress.com/store/feedback-score/3085095.html
https://www.aliexpress.com/store/feedback-score/2793002.html
https://www.aliexpress.com/store/feedback-score/4656043.html
https://www.aliexpress.com/store/feedback-score/4564021.html
我们只需要提取文件中所有URL的相同数据即可。
我们如何做到?
答案 0 :(得分:2)
由于URL的数量约为50,因此您可以将URL读入列表中,然后向每个URL发送请求。我刚刚测试了这6个网址,该解决方案适用于它们。但是您可能想要添加一些try-except,否则可能会发生任何异常。
import pandas as pd
import requests
from bs4 import BeautifulSoup
with open('urls.txt','r') as f:
urls=f.readlines()
master_list=[]
for idx,url in enumerate(urls):
s = requests.Session()
r = s.get(url)
soup = BeautifulSoup(r.content, "html.parser")
iframe_src = soup.select_one("#detail-displayer").attrs["src"]
r = s.get(f"https:{iframe_src}")
soup = BeautifulSoup(r.content, "html.parser")
rows = []
for row in soup.select(".history-tb tr"):
rows.append([e.text for e in row.select("th, td")])
df = pd.DataFrame.from_records(
rows,
columns=['Feedback', '1 Month', '3 Months', '6 Months'],
)
df = df.iloc[1:]
shop=url.split('/')[-1].split('.')[0]
df['Shop'] = shop
pivot = df.pivot(index='Shop', columns='Feedback')
master_list.append([shop]+pivot.values.tolist()[0])
if idx == len(urls) - 1: #last item in the list
final_output=pd.DataFrame(master_list)
pivot.columns = [' '.join(col).strip() for col in pivot.columns.values]
column_mapping = dict(zip(pivot.columns.tolist(), [col[:12] for col in pivot.columns.tolist()]))
final_output.columns = ['Shop']+[column_mapping[col] for col in pivot.columns]
final_output.set_index('Shop', inplace=True)
final_output.to_excel('Report.xlsx')
输出:
也许您可以考虑考虑的一种更好的解决方案是完全避免使用熊猫。数据获取后,您可以对其进行操作以获取列表并使用XlsxWriter。