我正在制作一个项目,对于拍摄的每张照片,它将存储在2d数组中。这是我已将Scrabble转换为numpy数组的图片。
arr1 = [['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' 'A' 'P' 'P' 'L' 'E' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']
['0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0' '0']]
执行完此操作后,我尝试使用coordinate_tiles = np.argwhere(arr1 != '0')
获得字母的协调,然后使用代码获取了apple这个词。如何将其存储在2d数组中,例如
temp = [['apple'], [[7, 5],
[7, 6],
[7, 7],
[7, 8],
[7, 9]]]
答案 0 :(得分:1)
看起来像字典,以单词为键,以坐标为值,可以更好地跟踪单词及其在板上的坐标。
# Create empty dictionary
temp = dict()
# Add word and coordinates to dictionary
if 'apple' not in temp:
temp['apple'] = [[7, 5],
[7, 6],
[7, 7],
[7, 8],
[7, 9]]
# Add leek to dictionary
if 'leek' not in temp:
temp['leek'] = [[...]]
那你可以做
# Access coordinates for apple
apple_loc = temp['apple']
# Access coordinates for leek
leek_loc = temp['leek']
查找苹果或任何其他单词的坐标。