我下面有使用人工神经网络(ANN)预测CSV文件中的类的代码。
如果我想在测试数据上找到预测,我要执行以下操作吗?
predictions = model.predict(X_test)
# round predictions
rounded = [round(x[0]) for x in predictions]
prediction = pd.DataFrame(rounded,columns=['predictions']).to_csv('prediction.csv')
在这种情况下,我将拥有一个CSV文件,其中包含预测列表(0和1)。我的问题是:
我如何知道预测引用的数据(行)?
我如何找到结果预测的准确性?
import numpy as np
import pandas as pd
from keras.layers import Dense, Dropout, BatchNormalization, Activation
import keras.models as md
import keras.layers.core as core
import keras.utils.np_utils as kutils
import keras.layers.convolutional as conv
from keras.layers import MaxPool2D
from subprocess import check_output
dataset = pd.read_csv('mutation-train.csv')
dataset = dataset[['CDS_Mutation',
'Primary_Tissue',
'Genomic',
'Gene_ID',
'Official_Symbol',
'Histology']]
X = dataset.iloc[:,0:5].values
y = dataset.iloc[:,5].values
# Encoding categorical data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_0 = LabelEncoder()
X[:, 0] = labelencoder_X_0.fit_transform(X[:, 0])
labelencoder_X_1 = LabelEncoder()
X[:, 1] = labelencoder_X_1.fit_transform(X[:, 1])
labelencoder_X_2= LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
labelencoder_X_4= LabelEncoder()
X[:, 4] = labelencoder_X_4.fit_transform(X[:, 4])
X = X.astype(float)
labelencoder_y= LabelEncoder()
y = labelencoder_y.fit_transform(y)
onehotencoder0 = OneHotEncoder(categorical_features = [0])
X = onehotencoder0.fit_transform(X).toarray()
X = X[:,0:]
onehotencoder1 = OneHotEncoder(categorical_features = [1])
X = onehotencoder1.fit_transform(X).toarray()
X = X[:,0:]
onehotencoder2 = OneHotEncoder(categorical_features = [2])
X = onehotencoder2.fit_transform(X).toarray()
X = X[:,0:]
onehotencoder4 = OneHotEncoder(categorical_features = [4])
X = onehotencoder4.fit_transform(X).toarray()
X = X[:,0:]
# Splitting the dataset training and test sets
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2)
# Feature scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
# Evaluating the ANN
from sklearn.model_selection import cross_val_score
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
model=Sequential()
model.add(Dense(32, activation = 'relu', input_shape=(X.shape[1],)))
model.add(Dense(16, activation = 'relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ["accuracy"])
# Compile model
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
# Fit the model
model.fit(X,y, epochs=3, batch_size=1)
# Evaluate the model
scores = model.evaluate(X,y)
print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))
# Calculate predictions
predictions = model.predict(X)
prediction = pd.DataFrame(predictions,columns=['predictions']).to_csv('prediction.csv')
谢谢。
答案 0 :(得分:2)
我如何知道预测所参考的数据(行)?
预测的向量和输入的长度和顺序相同。
我如何找到结果预测的准确性?
将输入的预测与基本事实进行比较。将正确的预测除以输入集的大小。
如果您没有输入集的基本事实,那么您将找不到准确性。最好的办法是在模型训练结束时将准确性估计为最终测试的准确性。
答案 1 :(得分:0)
您可以轻松地将索引列添加到dataset
。然后在train_test_split
之后恢复索引的新排列。