在子组列中查找“字符串”的出现,并根据其出现来标记主组

时间:2019-01-28 17:06:07

标签: python pandas numpy group-by pandas-groupby

我有如下数据:

Group   string
 A     Hello
 A     SearchListing
 A     GoSearch
 A     pen
 A     Hello
 B     Real-Estate
 B     Access
 B     Denied
 B     Group
 B     Group
 C     Glance
 C     NoSearch
 C     Home

以此类推

我想找出所有在字符串中具有“搜索”短语的组,并将它们标记为0/1。同时,我想汇总每个组的结果,例如唯一字符串和总字符串,以及该组遇到“搜索”的次数。我想要的最终结果是这样的:

Group   containsSearch  TotalStrings  UniqueStrings  NoOfTimesSearch
 A           1              5             4              2
 B           0              5             4              0
 C           1              3             3              1 

我可以使用简单的groupby子句进行汇总,但是在基于“搜索”的存在以及如何计算遇到的次数时如何将组标记为0/1方面存在问题。

2 个答案:

答案 0 :(得分:4)

让我们尝试一下:

l1 = lambda x: x.str.lower().str.contains('search').any().astype(int)
l1.__name__ = 'containsSearch'
l2 = lambda x: x.str.lower().str.contains('search').sum().astype(int)
l2.__name__ = 'NoOfTimesSEarch'

df.groupby('Group')['string'].agg(['count','nunique',l1,l2]).reset_index()

输出:

  Group  count  nunique  containsSearch  NooOfTimesSEarch
0     A      5        4               1                2
1     B      5        4               0                0
2     C      3        3               1                1

或者使用定义的功能,谢谢,@ W-B:

def conatinsSearch(x):
    return x.str.lower().str.contains('search').any().astype(int)

def NoOfTimesSearch(x):
    return x.str.lower().str.contains('search').sum().astype(int)


df.groupby('Group')['string'].agg(['count', 'nunique',
                                   conatinsSearch, NoOfTimesSearch]).reset_index()

输出:

  Group  count  nunique  conatinsSearch  NoOfTimesSearch
0     A      5        4               1                2
1     B      5        4               0                0
2     C      3        3               1                1

答案 1 :(得分:1)

如果要创建函数:

def my_agg(x):
    names = {
    'containsSearch' : int(x['string'].str.lower().str.contains('search').any()),
    'TotalStrings' : x['string'].count(),
    'UniqueStrings' : x['string'].drop_duplicates().count(),
    'NoOfTimesSearch' : int(x[x['string'].str.lower().str.contains('search')].count())
    }

    return pd.Series(names)

df.groupby('Group').apply(my_agg)

       containsSearch  TotalStrings  UniqueStrings  NoOfTimesSearch
Group                                                              
A                   1             5              4                2
B                   0             5              4                0
C                   1             3              3                1