我有如下数据:
Group string
A Hello
A SearchListing
A GoSearch
A pen
A Hello
B Real-Estate
B Access
B Denied
B Group
B Group
C Glance
C NoSearch
C Home
以此类推
我想找出所有在字符串中具有“搜索”短语的组,并将它们标记为0/1。同时,我想汇总每个组的结果,例如唯一字符串和总字符串,以及该组遇到“搜索”的次数。我想要的最终结果是这样的:
Group containsSearch TotalStrings UniqueStrings NoOfTimesSearch
A 1 5 4 2
B 0 5 4 0
C 1 3 3 1
我可以使用简单的groupby子句进行汇总,但是在基于“搜索”的存在以及如何计算遇到的次数时如何将组标记为0/1方面存在问题。
答案 0 :(得分:4)
让我们尝试一下:
l1 = lambda x: x.str.lower().str.contains('search').any().astype(int)
l1.__name__ = 'containsSearch'
l2 = lambda x: x.str.lower().str.contains('search').sum().astype(int)
l2.__name__ = 'NoOfTimesSEarch'
df.groupby('Group')['string'].agg(['count','nunique',l1,l2]).reset_index()
输出:
Group count nunique containsSearch NooOfTimesSEarch
0 A 5 4 1 2
1 B 5 4 0 0
2 C 3 3 1 1
或者使用定义的功能,谢谢,@ W-B:
def conatinsSearch(x):
return x.str.lower().str.contains('search').any().astype(int)
def NoOfTimesSearch(x):
return x.str.lower().str.contains('search').sum().astype(int)
df.groupby('Group')['string'].agg(['count', 'nunique',
conatinsSearch, NoOfTimesSearch]).reset_index()
输出:
Group count nunique conatinsSearch NoOfTimesSearch
0 A 5 4 1 2
1 B 5 4 0 0
2 C 3 3 1 1
答案 1 :(得分:1)
如果要创建函数:
def my_agg(x):
names = {
'containsSearch' : int(x['string'].str.lower().str.contains('search').any()),
'TotalStrings' : x['string'].count(),
'UniqueStrings' : x['string'].drop_duplicates().count(),
'NoOfTimesSearch' : int(x[x['string'].str.lower().str.contains('search')].count())
}
return pd.Series(names)
df.groupby('Group').apply(my_agg)
containsSearch TotalStrings UniqueStrings NoOfTimesSearch
Group
A 1 5 4 2
B 0 5 4 0
C 1 3 3 1