我有与此相似的数据框(语法差异很小的字符串)
<div class="container">
<ul>
<li class="row product">
<div class="img-container">
<a href="/gallery/product?id=21">
<img src="https://i.imgur.com/CyYN9a7.jpg" alt="Vials">
</a>
</div>
<div class="name-price-container">
<span>
<a href="/gallery/product?id=21">Vials Loooooooooong Text</a>
</span>
<span>$30.00</span>
</div>
<div class="btn-container">
<form method="POST" action="/gallery/remove_cart">
<input type="hidden" name="csrfmiddlewaretoken" value="...">
<input type="hidden" name="id" value="21">
<input type="submit" class="btn btn-light" value="Remove">
</form>
</div>
</li>
<li class="row product">
<div class="img-container">
<a href="/gallery/product?id=22">
<img src="https://i.imgur.com/PoCaEjw.jpg" alt="Driftbird">
</a>
</div>
<div class="name-price-container">
<span>
<a href="/gallery/product?id=22">Driftbird Loooooooooong Text</a>
</span>
<span>$25.00</span>
</div>
<div class="btn-container">
<form method="POST" action="/gallery/remove_cart">
<input type="hidden" name="csrfmiddlewaretoken" value="...">
<input type="hidden" name="id" value="22">
<input type="submit" class="btn btn-light" value="Remove">
</form>
</div>
</li>
<li class="row product">
<div class="img-container">
<a href="/gallery/product?id=19">
<img src="https://i.imgur.com/KxAyAyE.jpg" alt="Dragon">
</a>
</div>
<div class="name-price-container">
<span>
<a href="/gallery/product?id=19">Dragon Loooooooooong Text</a>
</span>
<span>$300.00</span>
</div>
<div class="btn-container">
<form method="POST" action="/gallery/remove_cart">
<input type="hidden" name="csrfmiddlewaretoken" value="...">
<input type="hidden" name="id" value="19">
<input type="submit" class="btn btn-light" value="Remove">
</form>
</div>
</li>
</ul>
</div>
这是我的自定义词典
place1 <- c("pondichery ", "Pondichery", "Pondichéry", "Port-Louis", "Port Louis ")
place2 <- c("Lorent", "Pondichery", " Lorient", "port-louis", "Port Louis")
place3 <- c("Loirent", "Pondchéry", "Brest", "Port Louis", "Nantes")
places2clean <- data.frame(place1, place2, place3)
我想根据自定义词典匹配并替换所有字符串。
预期结果:
dictionnary <- c("Pondichéry", "Lorient", "Port-Louis", "Nantes", "Brest")
dictionnary <- data.frame(dictionnary)
如何使用stringdistance匹配和替换所有数据框?
答案 0 :(得分:3)
此处将使用基本R函数adist
或stringdist::amatch
函数。没有理由将您的字典变成data.frame
,所以我不在这里。
如果您想尝试,可以对stringdist包使用不同的方法,尽管默认设置在这里可以正常工作。请注意,对于这两个函数,都选择了最佳匹配,但是如果没有紧密匹配(由maxDist参数定义),则将返回NA。
library(stringdist)
# Using stringdist package
clean_places <- function(places, dictionary, maxDist = 5) {
dictionary[amatch(places, dictionary, maxDist = maxDist)]
}
# Using base R
clean_places2 <- function(places, dictionary, maxDist = 5) {
sm <- adist(places, dictionary)
sm[sm > maxDist] <- NA
dictionary[apply(sm, 1, which.min)]
}
dictionary <- c("Pondichéry", "Lorient", "Port-Louis", "Nantes", "Brest")
place1 <- c("pondichery ", "Pondichery", "Pondichéry", "Port-Louis", "Port Louis ")
place2 <- c("Lorent", "Pondichery", " Lorient", "port-louis", "Port Louis")
place3 <- c("Loirent", "Pondchéry", "Brest", "Port Louis", "Nantes")
clean_places(place1, dictionary)
# [1] "Pondichéry" "Pondichéry" "Pondichéry" "Port-Louis" "Port-Louis"
clean_places(place2, dictionary)
# [1] "Lorient" "Pondichéry" "Lorient" "Port-Louis" "Port-Louis"
clean_places(place3, dictionary)
# [1] "Lorient" "Pondichéry" "Brest" "Port-Louis" "Nantes"
clean_places2(place1, dictionary)
# [1] "Pondichéry" "Pondichéry" "Pondichéry" "Port-Louis" "Port-Louis"
clean_places2(place2, dictionary)
# [1] "Lorient" "Pondichéry" "Lorient" "Port-Louis" "Port-Louis"
clean_places2(place3, dictionary)
# [1] "Lorient" "Pondichéry" "Brest" "Port-Louis" "Nantes"
答案 1 :(得分:1)
下面的方法首先计算每列与字典之间的距离矩阵,然后获得距离较小的字符串。
library(stringdist)
places2clean[] <- lapply(places2clean, trimws)
d <- lapply(places2clean, function(x) {
sapply(dictionnary$dictionnary, function(y) stringdist(x, y))
})
res <- sapply(d, function(x){
inx <- apply(x, 1, which.min)
dictionnary$dictionnary[inx]
})
as.data.frame(res)
# place1 place2 place3
#1 Pondichéry Lorient Lorient
#2 Pondichéry Pondichéry Pondichéry
#3 Pondichéry Lorient Brest
#4 Port-Louis Port-Louis Port-Louis
#5 Port-Louis Port-Louis Nantes