基于一些虚拟数据,我创建了带有欲望图的直方图
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each=200)),
weight = c(rnorm(200, 55), rnorm(200, 58))
)
a <- ggplot(wdata, aes(x = weight))
a + geom_histogram(aes(y = ..density..,
# color = sex
),
colour="black",
fill="white",
position = "identity") +
geom_density(alpha = 0.2,
# aes(color = sex)
) +
scale_color_manual(values = c("#868686FF", "#EFC000FF"))
weight
的直方图应与sex
对应,因此我将aes(y = ..density.., color = sex)
用于geom_histogram()
:
a + geom_histogram(aes(y = ..density..,
color = sex
),
colour="black",
fill="white",
position = "identity") +
geom_density(alpha = 0.2,
# aes(color = sex)
) +
scale_color_manual(values = c("#868686FF", "#EFC000FF"))
正如我所希望的那样,密度图保持不变(两组都相同),但是直方图会按比例增加(并且现在似乎已经被单独对待):
如何防止这种情况发生?我需要单独着色的直方图条,但需要所有着色组的联合密度图。
P.S。
为aes(color = sex)
使用geom_density()
可使一切恢复到原始比例-但我不希望使用单独的密度图(如下所示):
a + geom_histogram(aes(y = ..density..,
color = sex
),
colour="black",
fill="white",
position = "identity") +
geom_density(alpha = 0.2,
aes(color = sex)
) +
scale_color_manual(values = c("#868686FF", "#EFC000FF"))
编辑:
正如已经建议的那样,用geom_histogram()
除以y = ..density../2
的美学中的组数可以近似得出解决方案。但是,这仅适用于对称分布,如下面的第一个输出所示:
a + geom_histogram(aes(y = ..density../2,
color = sex
),
colour="black",
fill="white",
position = "identity") +
geom_density(alpha = 0.2,
) +
scale_color_manual(values = c("#868686FF", "#EFC000FF"))
产生
但是,使用这种方法时,对称分布较少可能会引起麻烦。参见以下内容,其中5个组使用y = ..density../5
。首先是原稿,然后是操纵(使用position = "stack"
):
由于左侧的分布较重,因此左侧除以5的低估为准,而右侧则高估了。
编辑2:解决方案
如安德鲁(Andrew)所建议,以下(完整的)代码解决了该问题:
library(ggplot2)
set.seed(1234)
wdata = data.frame(
sex = factor(rep(c("F", "M"), each = 200)),
weight = c(rnorm(200, 55), rnorm(200, 58))
)
binwidth <- 0.25
a <- ggplot(wdata,
aes(x = weight,
# Pass binwidth to aes() so it will be found in
# geom_histogram()'s aes() later
binwidth = binwidth))
# Basic plot w/o colouring according to 'sex'
a + geom_histogram(aes(y = ..density..),
binwidth = binwidth,
colour = "black",
fill = "white",
position = "stack") +
geom_density(alpha = 0.2) +
scale_color_manual(values = c("#868686FF", "#EFC000FF")) +
# Use fixed scale for sake of comparability
scale_x_continuous(limits = c(52, 61)) +
scale_y_continuous(limits = c(0, 0.25))
# Plot w/ colouring according to 'sex'
a + geom_histogram(aes(x = weight,
# binwidth will only be found if passed to
# ggplot()'s aes() (as above)
y = ..count.. / (sum(..count..) * binwidth),
color = sex),
binwidth = binwidth,
fill="white",
position = "stack") +
geom_density(alpha = 0.2) +
scale_color_manual(values = c("#868686FF", "#EFC000FF")) +
# Use fixed scale for sake of comparability
scale_x_continuous(limits = c(52, 61)) +
scale_y_continuous(limits = c(0, 0.25)) +
guides(color = FALSE)
注意:
必须将binwidth = binwidth
传递到ggplot()
的{{1}},否则aes()
的{{1}}将找不到预先指定的binwidth
。此外,指定了geom_histogram()
,以便直方图的两个版本都是可比较的。伪数据和更复杂的分布图,如下所示:
已解决-谢谢您的帮助!
答案 0 :(得分:1)
我认为您无法使用y=..density..
来完成此操作,但是您可以像这样重新创建相同的内容...
binwidth <- 0.25 #easiest to set this manually so that you know what it is
a + geom_histogram(aes(y = ..count.. / (sum(..count..) * binwidth),
color = sex),
binwidth = binwidth,
fill="white",
position = "identity") +
geom_density(alpha = 0.2) +
scale_color_manual(values = c("#868686FF", "#EFC000FF"))