I have a use case that needs to read a nested JSON schema and write it back as a Parquet
(My schema changes based on the day I am reading the data so I don't know the exact schema in advance) since in some of my nest keys I have some character like space when I want to save it as parquet I am getting an exception complaining about special character ,;{}()\\n\\t=
This is a sample Schema it's not real schema keys are dynamic and chages day by day
val nestedSchema = StructType(Seq(
StructField("event_time", StringType),
StructField("event_id", StringType),
StructField("app", StructType(Seq(
StructField("environment", StringType),
StructField("name", StringType),
StructField("type", StructType(Seq(
StructField("word tier", StringType), ### This cause problem when you save it as Parquet
StructField("level", StringType)
))
))))))
val nestedDF = spark.createDataFrame(sc.emptyRDD[Row], nestedSchema)
myDF.printSchema
root
|-- event_time: string (nullable = true)
|-- event_id: string (nullable = true)
|-- app: struct (nullable = true)
| |-- environment: string (nullable = true)
| |-- name: string (nullable = true)
| |-- type: struct (nullable = true)
| | |-- word tier: string (nullable = true)
| | |-- level: string (nullable = true)
myDF.write
.mode("overwrite")
.option("compression", "snappy")
.parquet("PATH/TO/DESTINATION")
I Found some solution like this
myDF.toDF(myDF
.schema
.fieldNames
.map(name => "[ ,;{}()\\n\\t=]+".r.replaceAllIn(name, "_")): _*)
.write
.mode("overwrite")
.option("compression", "snappy")
.parquet("PATH/TO/DESTINATION")
But it only works on a parent keys, not on a nested one. Is there any recursive solution for this?
My question is not a duplicate of this question Since my schema is dynamic and I don't know about what are my keys. It changes based on the data I am reading, so my solution should be generic, I need somehow recursively created the same schema structure but with a key a correct name.
答案 0 :(得分:0)
基本上,您必须构造一个Column
表达式,该表达式会将您的输入转换为带有经过清理的字段名称的类型。为此,可以使用org.apache.spark.sql.functions.struct
函数,该函数允许您结合其他Column
来构造结构类型的列。这样的事情应该起作用:
import org.apache.spark.sql.{functions => f}
def sanitizeName(s: String): String = s.replace(" ", "_")
def sanitizeFieldNames(st: StructType, context: String => Column): Column = f.struct(
st.fields.map { sf =>
val sanitizedName = sanitizeName(sf.name)
val sanitizedField = sf.dataType match {
case struct: StructType =>
val subcontext = context(sf.name)
sanitizeFieldNames(struct, subcontext(_))
case _ => context(sf.name)
}
sanitizedField.as(sanitizedName)
}: _*
)
您可以这样使用它:
val df: DataFrame = ...
val appFieldType = df.schema("app").asInstanceOf[StructType] // or otherwise obtain the field type
df.withColumn(
"app",
sanitizeFieldNames(appFieldType, df("app")(_))
)
对于您的类型,此递归函数将返回类似
的列f.struct(
df("app")("environment").as("environment"),
df("app")("name").as("name"),
f.struct(
df("app")("type")("word tier").as("word_tier"),
df("app")("type")("level").as("level")
).as("type")
)
然后将其分配给“ app”字段,替换其中的内容。
但是,此解决方案有局限性。它不支持嵌套的数组或映射:如果您在数组或映射中具有包含结构的架构,则此方法将不会在数组和映射中转换任何结构。就是说,在Spark 2.4中,他们添加了对集合执行操作的函数,因此在Spark 2.4中,该函数有可能被通用化以支持嵌套数组和映射。
最后,可以用mapPartitions
做您想做的事。首先,您编写一个递归方法,该方法仅清除您字段的StructType
:
def sanitizeType(dt: DataType): DataType = dt match {
case st: StructType => ... // rename fields and invoke recursively
case at: ArrayType => ... // invoke recursively
case mt: MapType => ... // invoke recursively
case _ => dt // simple types do not have anything to sanitize
}
第二,将已清理的架构应用于数据框。基本上有两种方法可以做到:一种安全的mapPartitions
和一种依靠内部Spark API的方法。
使用mapPartitions
,很简单:
df.mapPartitions(identity)(RowEncoder(sanitizeType(df.schema)))
在这里,我们应用mapPartitions
操作,并明确指定输出编码器。请记住,Spark中的模式不是数据固有的:它们始终与特定的数据帧相关联。数据框内的所有数据均表示为行,在各个字段上没有标签,只是位置。只要您的架构在相同位置上具有完全相同的类型(但名称可能不同),它便会按预期工作。
mapPartitions
确实会在逻辑计划中导致几个其他节点。为了避免这种情况,可以直接使用特定的编码器构造一个Dataset[Row]
实例:
new Dataset[Row](df.sparkSession, df.queryExecution.logical, RowEncoder(sanitizeType(df.schema)))
这样可以避免不必要的mapPartitions
(通常会导致查询执行计划中的反序列化映射序列化步骤),但可能并不安全;我个人现在没有检查它,但是它可以为您工作。