我正在尝试使用大小相同的各种熊猫数据帧构建数据库。我想为数据框中的每个点分配所有其他点。
我得到这样的东西:
数据帧1:
```{r}
valid_markdown <- your_function()
```
(ref:my_hack) `r valid_markdown`
```{block2, type="block"}
(ref:my_hack)
```
数据框2:
1 2 3 4
1 A B C D
2 A B C D
3 A B C D
最终数据帧(类似这样)
1 2 3 4
1 A D G J
2 B E H K
3 C F I L
答案 0 :(得分:1)
您可以添加两个数据帧中的值,以及两者之间的分隔符,并使用str.split
遍历列以创建列表。最后使用pd.concat
将结果转换为数据框:
df = df1 + ',' + df2
pd.concat([df[col].str.split(',') for col in df.columns], axis=1)
1 2 3 4
1 [A, A] [B, D] [C, G] [D, J]
2 [A, B] [B, E] [C, H] [D, K]
3 [A, C] [B, F] [C, I] [D, L]
df1.combine(df2, func=lambda a,b: (a + ',' + b).str.split(','))
1 2 3 4
1 [A, A] [B, D] [C, G] [D, J]
2 [A, B] [B, E] [C, H] [D, K]
3 [A, C] [B, F] [C, I] [D, L]
答案 1 :(得分:1)
检查
<script>window.ShopifyAnalytics = window.ShopifyAnalytics || {};
window.ShopifyAnalytics.meta = window.ShopifyAnalytics.meta || {};
window.ShopifyAnalytics.meta.currency = 'USD';
var meta = {"product":{"id":2008798101573,"vendor":"Adidas","type":"Sneakers","variants":[{"id":19054898249797,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 3","public_title":"3","sku":"98197426"},{"id":19054898282565,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 3.5","public_title":"3.5","sku":"98197427"},{"id":19054898315333,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 4","public_title":"4","sku":"98197428"},{"id":19054898348101,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 4.5","public_title":"4.5","sku":"98197429"},{"id":19054898380869,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 5","public_title":"5","sku":"191525030983"},{"id":19054898413637,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 5.5","public_title":"5.5","sku":"191525030952"},{"id":19054898446405,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 6","public_title":"6","sku":"191525030938"},{"id":19054898479173,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 6.5","public_title":"6.5","sku":"191525030914"},{"id":19054898511941,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 7","public_title":"7","sku":"191525030907"},{"id":19054898544709,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 7.5","public_title":"7.5","sku":"191525030976"},{"id":19054898577477,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 8","public_title":"8","sku":"191525031010"},{"id":19054898610245,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 8.5","public_title":"8.5","sku":"191525030990"},{"id":19054898643013,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 9","public_title":"9","sku":"191525031027"},{"id":19054898675781,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 9.5","public_title":"9.5","sku":"191525030921"},{"id":19054898708549,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 10","public_title":"10","sku":"191525030969"},{"id":19054898741317,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 10.5","public_title":"10.5","sku":"191525030945"},{"id":19054898774085,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 11","public_title":"11","sku":"191525031003"},{"id":19054898806853,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 11.5","public_title":"11.5","sku":"98197443"},{"id":19054898839621,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 12","public_title":"12","sku":"98197444"},{"id":19054898872389,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 12.5","public_title":"12.5","sku":"98197445"},{"id":19054898905157,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 13","public_title":"13","sku":"98197446"},{"id":19054898937925,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 13.5","public_title":"13.5","sku":"98197447"},{"id":19054898970693,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 14","public_title":"14","sku":"98197448"},{"id":19054899003461,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 14.5","public_title":"14.5","sku":"98197449"},{"id":19054899036229,"price":13000,"name":"adidas Originals WMNS Falcon - Ash Pearl \/ Off White - 15","public_title":"15","sku":"98197450"}]},"page":{"pageType":"product","resourceType":"product","resourceId":2008798101573}};
for (var attr in meta) {
window.ShopifyAnalytics.meta[attr] = meta[attr];
}</script>
如果我是我,我将关注多个索引而不是列表类型的列
pd.concat([df1,df2],1).groupby(level=0,axis=1).agg(lambda x : x.values.tolist())
Out[529]:
1 2 3 4
1 [A, A] [B, D] [C, G] [D, J]
2 [A, B] [B, E] [C, H] [D, K]
3 [A, C] [B, F] [C, I] [D, L]
答案 2 :(得分:0)
效率不高,但是您可以将所有单元格转换为列表,然后只需添加如下数据框即可:
bluetoothAdapter.getBluetoothLeScanner()
输出
import pandas as pd
import numpy as np
np.random.seed(42)
df1 = pd.DataFrame(
[list('ABCD') for _ in range(5)]
)
df2 = pd.DataFrame(
[np.random.choice(list('ABCD'), size=4).tolist() for _ in range(5)]
)
df1 = df1.apply(lambda x: [[v] for v in x])
df2 = df2.apply(lambda x: [[v] for v in x])
df1 + df2