我正在寻求帮助的是从xyz数据集获取以下内容的图:
xyz数据集
x和y是随机采样的坐标,z表示被认为是具有指数协方差函数的高斯现象的基本现象。我有一个没有空间相关性的模拟随机数据集。这样,我知道空间相关性将随着距原点的距离而迅速衰减。 set.seed(1)
n <- 20 ## number of values to be generated
x <- runif(n) ## position
y <- runif(n) ## position
z <- rnorm(n, mean = 10, sd = 4) ## value of underlying phenomena
plot(x, y, cex = z / 5, bty = "l", pch = 19, col = "#FF000070")
xyz <- data.frame(x, y, z)
# We then go on to define the model using maximum likelihood and an exponential
# covariance model for simplicity's sake.
nllmulti <- function(theta){
mu <- matrix(theta[1], nrow = n)
S <- diag(rep(exp(theta[2])^2, n)) # Covaraince matrix
ll <- -1/2 * (log(det(S)) + t(z - mu) %*% solve(S) %*% (z - mu) + n * log(2 * pi))
nll <- -ll
return(nll)
}
# Using geoR
library(geoR)
# Distance matrix
h <- dist(xyz)
h.dat <- as.geodata(xyz, coords.col = 1:2, data.col = 3)
Ref.ML <- likfit(h.dat, coords = h.dat$coords, data = h.dat$data,
ini.cov.pars = c(.1, .1),
fix.nugget = TRUE
); Ref.ML
# Plot the results as a variogram
v1 <- variog(coords = cbind(x,y), data = z)
plot(v1)
lines(Ref.ML)
我不确定下一步该怎么做。