请,我只需要为(X_test,y_test)数据的每个拆分明确获取交叉验证统计信息。
所以,我尝试这样做:
kf = KFold(n_splits=n_splits)
X_train_tmp = []
y_train_tmp = []
X_test_tmp = []
y_test_tmp = []
mae_train_cv_list = []
mae_test_cv_list = []
for train_index, test_index in kf.split(X_train):
for i in range(len(train_index)):
X_train_tmp.append(X_train[train_index[i]])
y_train_tmp.append(y_train[train_index[i]])
for i in range(len(test_index)):
X_test_tmp.append(X_train[test_index[i]])
y_test_tmp.append(y_train[test_index[i]])
model.fit(X_train_tmp, y_train_tmp) # FIT the model = SVR, NN, etc.
mae_train_cv_list.append( mean_absolute_error(y_train_tmp, model.predict(X_train_tmp)) # MAE of the train part of the KFold.
mae_test_cv_list.append( mean_absolute_error(y_test_tmp, model.predict(X_test_tmp)) ) # MAE of the test part of the KFold.
X_train_tmp = []
y_train_tmp = []
X_test_tmp = []
y_test_tmp = []
通过使用例如KFold来获取每个交叉验证拆分的平均绝对误差(MAE)是正确的方法吗?
非常感谢您!
Maicon P.Lourenço
答案 0 :(得分:5)
您的方法存在一些问题。
首先,您当然不必在训练与验证列表中(即,您的2个内部for
循环)将数据一个接一个地手动添加;简单的索引就可以完成这项工作。
此外,我们通常从不计算和报告训练CV折叠的误差-仅验证折叠的误差。
请牢记这些,并将术语改为“验证”而不是“测试”,这是一个使用Boston数据的可重现的简单示例,应直接进行调整以适应您的情况:
from sklearn.model_selection import KFold
from sklearn.datasets import load_boston
from sklearn.metrics import mean_absolute_error
from sklearn.tree import DecisionTreeRegressor
X, y = load_boston(return_X_y=True)
n_splits = 5
kf = KFold(n_splits=n_splits, shuffle=True)
model = DecisionTreeRegressor(criterion='mae')
cv_mae = []
for train_index, val_index in kf.split(X):
model.fit(X[train_index], y[train_index])
pred = model.predict(X[val_index])
err = mean_absolute_error(y[val_index], pred)
cv_mae.append(err)
之后,您的cv_mae
应该类似于(由于简历的随机性质,细节会有所不同):
[3.5294117647058827,
3.3039603960396042,
3.5306930693069307,
2.6910891089108913,
3.0663366336633664]
当然,所有这些显式的东西并不是真正必需的。您可以使用cross_val_score
更轻松地完成这项工作。不过有一个小问题:
from sklearn.model_selection import cross_val_score
cv_mae2 =cross_val_score(model, X, y, cv=n_splits, scoring="neg_mean_absolute_error")
cv_mae2
# result
array([-2.94019608, -3.71980198, -4.92673267, -4.5990099 , -4.22574257])
除了负号(这并不是真正的问题)之外,您还会注意到结果的方差看起来比上面的cv_mae
高得多;原因是我们没有改组我们的数据。不幸的是,cross_val_score
没有提供改组选项,因此我们必须使用shuffle
手动进行。所以我们的最终代码应该是:
from sklearn.model_selection import cross_val_score
from sklearn.utils import shuffle
X_s, y_s =shuffle(X, y)
cv_mae3 =cross_val_score(model, X_s, y_s, cv=n_splits, scoring="neg_mean_absolute_error")
cv_mae3
# result:
array([-3.24117647, -3.57029703, -3.10891089, -3.45940594, -2.78316832])
褶皱之间的差异明显较小,并且更接近我们的初始cv_mae
...