我想创建一个具有序列号的3D NumPy数组,如下所示:
[[[11 27 43]
[12 28 44]
[13 29 45]
[14 30 46]]
[[15 31 47]
[16 32 48]
[17 33 49]
[18 34 50]]
[[19 35 51]
[20 36 52]
[21 37 53]
[22 38 54]]
[[23 39 55]
[24 40 56]
[25 41 57]
[26 42 58]]]
我这样做了:A = np.arange(11, 59).reshape((4, 4, 3))
,但是我得到了这个东西:
[[[11 12 13]
[14 15 16]
[17 18 19]
[20 21 22]]
[[23 24 25]
[26 27 28]
[29 30 31]
[32 33 34]]
[[35 36 37]
[38 39 40]
[41 42 43]
[44 45 46]]
[[47 48 49]
[50 51 52]
[53 54 55]
[56 57 58]]]
所以这不是我想要的顺序。我做了一些额外的步骤来获得正确的3D阵列。首先,我将数字整形为2D数组:A = np.arange(11, 59).reshape((-1, 4))
以获取此信息:
[[11 12 13 14]
[15 16 17 18]
[19 20 21 22]
[23 24 25 26]
[27 28 29 30]
[31 32 33 34]
[35 36 37 38]
[39 40 41 42]
[43 44 45 46]
[47 48 49 50]
[51 52 53 54]
[55 56 57 58]]
然后,我拆分并堆叠2D数组,得到我想要的3D数组:A = np.dstack(np.vsplit(A, 3))
[[[11 27 43]
[12 28 44]
[13 29 45]
[14 30 46]]
[[15 31 47]
[16 32 48]
[17 33 49]
[18 34 50]]
[[19 35 51]
[20 36 52]
[21 37 53]
[22 38 54]]
[[23 39 55]
[24 40 56]
[25 41 57]
[26 42 58]]]
现在我想知道是否有一种更优雅,更直接的方法来达到相同的结果。谢谢。
答案 0 :(得分:6)
获取远程数组,重塑形状,然后置换轴-
np.arange(11, 59).reshape(3,4,4).transpose(1,2,0)
另一种置换轴的方法是使用np.moveaxis
-
np.moveaxis(np.arange(11, 59).reshape(3,4,4),0,2)