查找两个不同数据框的列之间的部分匹配项,并在找到匹配项时分配值

时间:2019-01-11 14:13:28

标签: python pandas dataframe string-matching

我想用df1数据框“类别”列中的正确值填充df2数据框的“类别”列。

import pandas as pd

df1 = pd.DataFrame({"Receiver": ["Insurance company", "Shop", "Pizza place", "Library", "Gas station 24/7", "Something else", "Whatever receiver"], "Category": ["","","","","","",""]}) 
df2 = pd.DataFrame({"Category": ["Insurances", "Groceries", "Groceries", "Fastfood", "Fastfood", "Car"], "Searchterm": ["Insurance", "Shop", "Market", "Pizza", "Burger", "Gas"]})

输出:

df1
Receiver                Category
0   Insurance company   
1   Shop    
2   Pizza place 
3   Library 
4   Gas station 24/7    
5   Something else  
6   Whatever receiver   

df2
    Category    Searchterm
0   Insurances  Insur
1   Groceries   Shop
2   Groceries   Market
3   Fastfood    Pizza
4   Fastfood    Burger
5   Car         Gas

我想逐行比较df1["Receiver"]df2["Searchterm"],然后在后者甚至部分匹配前者的情况下,将该行的df2["Category"]分配给{{ 1}}。

例如,df1["Category"]中的“披萨”与df2["Searchterm"]中的“披萨店”部分匹配,因此我想将“快餐”(在df1["Receiver"]中为披萨的类别)分配给df2["Category"]中“披萨店”的类别。

所需的输出为:

df1["Category"]

那么如何用正确的类别填充df1 Receiver Category 0 Insurance company Insurances 1 Shop Groceries 2 Pizza place Fastfood 3 Library 4 Gas station 24/7 Car 5 Something else 6 Whatever receiver ?谢谢。

3 个答案:

答案 0 :(得分:5)

重复类别

在假设类别数相对于接收者数较小的情况下,一种策略是迭代类别。使用此解决方案时,请注意,只有 last 匹配项才会停留在找到多个类别的位置。

for tup in df2.itertuples(index=False):
    mask = df1['Receiver'].str.contains(tup.Searchterm, regex=False)
    df1.loc[mask, 'Category'] = tup.Category

print(df1)

#      Category           Receiver
# 0  Insurances  Insurance company
# 1   Groceries               Shop
# 2    Fastfood        Pizza place
# 3                        Library
# 4         Car   Gas station 24/7
# 5                 Something else
# 6              Whatever receiver

性能基准测试

如前所述,该解决方案在df1中的行上进行缩放比在df2中的类别上进行缩放。为了说明这一点,请在下面考虑不同大小的输入数据帧的性能。

def jpp(df1, df2):
    for tup in df2.itertuples(index=False):
        df1.loc[df1['Receiver'].str.contains(tup.Searchterm, regex=False), 'Category'] = tup.Category
    return df1

def user347(df1, df2):
    df1['Category'] = df1['Receiver'].replace((df2['Searchterm'] + r'.*').values,
                                              df2['Category'].values,
                                              regex=True)
    df1.loc[df1['Receiver'].isin(df1['Category']), 'Category'] = ''
    return df1

df1 = pd.concat([df1]*10**4, ignore_index=True)
df2 = pd.concat([df2], ignore_index=True)

%timeit jpp(df1, df2)      # 145 ms per loop
%timeit user347(df1, df2)  # 364 ms per loop

df1 = pd.concat([df1], ignore_index=True)
df2 = pd.concat([df2]*100, ignore_index=True)

%timeit jpp(df1, df2)      # 666 ms per loop
%timeit user347(df1, df2)  # 88 ms per loop

答案 1 :(得分:3)

使用str.extract的另一种解决方案

pat = '('+'|'.join(df2['Searchterm'])+')'
df1["Category"] = df1['Receiver'].str.extract(pat)[0].map(df2.set_index('Searchterm')['Category'].to_dict()).fillna('')

    Receiver            Category
0   Insurance company   Insurances
1   Shop                Groceries
2   Pizza place         Fastfood
3   Library 
4   Gas station 24/7    Car
5   Something else  
6   Whatever receiver   

性能基准化

def jpp(df1, df2):
    for tup in df2.itertuples(index=False):
        df1.loc[df1['Receiver'].str.contains(tup.Searchterm, regex=False), 'Category'] = tup.Category
    return df1

def user347(df1, df2):
    df1['Category'] = df1['Receiver'].replace((df2['Searchterm'] + r'.*').values,
                                              df2['Category'].values,
                                              regex=True)
    df1.loc[df1['Receiver'].isin(df1['Category']), 'Category'] = ''
    return df1

def vai(df1, df2):
    pat = '('+'|'.join(df2['Searchterm'])+')'
    df1["Category"] = df1['Receiver'].str.extract(pat)[0].map(df2.set_index('Searchterm')['Category'].to_dict()).fillna('')

df1 = pd.concat([df1]*10**4, ignore_index=True)
df2 = pd.concat([df2], ignore_index=True)

%timeit jpp(df1, df2)    
%timeit user347(df1, df2)
%timeit vai(df1, df2)


120 ms ± 2.26 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
221 ms ± 4.74 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
78.2 ms ± 1.56 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

df1 = pd.concat([df1], ignore_index=True)
df2 = pd.concat([df2]*100, ignore_index=True)

%timeit jpp(df1, df2)
%timeit user347(df1, df2)
%timeit vai(df1, df2)

11.4 s ± 276 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
20.4 s ± 296 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
98.3 ms ± 408 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

答案 2 :(得分:3)

您可以将Series.replaceregex结合使用,以实现矢量化方法:

df1['Category'] = df1['Receiver'].replace(
    (df2['Searchterm'] + r'.*').values,
    df2['Category'].values,
    regex=True
)

df1.loc[df1['Receiver'].isin(df1['Category']), 'Category'] = ''

print(df1)

     Category           Receiver
0  Insurances  Insurance company
1   Groceries               Shop
2    Fastfood        Pizza place
3                        Library
4         Car   Gas station 24/7
5                 Something else
6              Whatever receiver

请注意,这假设每个Searchterm字符串都将出现在每个Receiver字符串的开头。如果不正确,请相应地调整正则表达式。