我在熊猫中有以下数据框
date prod hourly_bucket tank trans flag
01-01-2019 TP 05:00:00-06:00:00 2 Preset Peak
01-01-2019 TP 05:00:00-06:00:00 2 Preset Peak
01-01-2019 TP 05:00:00-06:00:00 2 Non Preset Peak
02-01-2019 TP 05:00:00-06:00:00 2 Preset Lean
02-01-2019 TP 05:00:00-06:00:00 2 Preset Lean
02-01-2019 TP 05:00:00-06:00:00 2 Non Preset Lean
我想要的数据帧将是日级别和槽级别的聚合,然后计算Preset,Non-Preset
小时内有多少Lean and Peak
个交易
date tank Lean_Non_Preset Lean_Preset Peak_Non_Preset Peak_Preset
01-01-2019 2 1 2 1 2
我正在熊猫后面追随
lean_peak_preset_cnt = df.pivot_table(index=['date','tank'], columns=['flag'],values=['trans'],aggfunc='count').reset_index()
但是它没有给我所需的解决方案
答案 0 :(得分:3)
将'trans'
添加到参数columns
,然后在MultiIndex
和map
的列中展平join
:
lean_peak_preset_cnt = df.pivot_table(index=['date','tank'],
columns=['flag','trans'],
aggfunc='size',
fill_value=0)
lean_peak_preset_cnt.columns = lean_peak_preset_cnt.columns.map('_'.join)
lean_peak_preset_cnt = lean_peak_preset_cnt.reset_index()
print (lean_peak_preset_cnt)
date tank Lean_No Preset Lean_Preset Peak_Non Preset Peak_Preset
0 01-01-2019 2 0 0 1 2
1 02-01-2019 2 1 2 0 0
答案 1 :(得分:0)
您快到了:
piv = (df.pivot_table(index=['date', 'tank'], columns=['trans', 'flag'],
aggfunc='size', fill_value=0))
piv.columns = piv.columns.ravel()
size函数提供所需的计数,您希望将非计数值填充为0,并指定所需的列和索引。有关更多详细信息,请参见docs。 ravel
将您的多索引列合并到一个级别。
(Nonpreset, Lean) (Nonpreset, Peak) (Preset, Lean) \
#date tank
#01-01-2019 2 0 1 0
#02-01-2019 2 1 0 2
(Preset, Peak)
#date tank
#01-01-2019 2 2
#02-01-2019 2 0