我有带有电影标题的数据帧和带有类型的列。例如标题为“ One”的电影是“ Action”和“ Vestern”,因为在适当的列中具有“ 1”。
Movie Action Fantasy Vestern
0 One 1 0 1
1 Two 0 0 1
2 Three 1 1 0
我的目标是创建列genres
,其中将包含特定电影具有的每种流派的名称。
为此,我尝试使用lambda
和list comprehension
,因为这样做会有所帮助。但是在运行以下代码行之后:
df['genres'] = df.apply(lambda x: [x+"|"+x for x in df.columns if x!=0])
我每行只有NaN
值:
Movie Action Fantasy Vestern genres
0 One 1 0 1 NaN
1 Two 0 0 1 NaN
2 Three 1 1 0 NaN
也尝试使用groupby
,但没有成功。
预期输出为:
Movie Action Fantasy Vestern genres
0 One 1 0 1 Action|Vestern
1 Two 0 0 1 Vestern
2 Three 1 1 0 Action|Fantasy
要复制的代码:
import pandas as pd
import numpy as np
df = pd.DataFrame({"Movie":['One','Two','Three'],
"Action":[1,0,1],
"Fantasy":[0,0,1],
"Vestern":[1,1,0]})
print(df)
感谢您的帮助
答案 0 :(得分:2)
import pandas as pd
import numpy as np
df = pd.DataFrame({"Movie":['One','Two','Three'],
"Action":[1,0,1],
"Fantasy":[0,0,1],
"Vestern":[1,1,0]})
cols = df.columns.tolist()[1:]
df['genres'] = df.apply(lambda x: "|".join(str(z) for z in [i for i in cols if x[i] !=0]) ,axis=1)
print(df)
Movie Action Fantasy Vestern genres
0 One 1 0 1 Action|Vestern
1 Two 0 0 1 Vestern
2 Three 1 1 0 Action|Fantasy
答案 1 :(得分:1)
要提高性能,可以使用dot
所有列,而不是第一列,所有列都没有,最后separator
,最后删除|
,rstrip
:
df['new'] = df.iloc[:, 1:].dot(df.columns[1:] + '|').str.rstrip('|')
print (df)
Movie Action Fantasy Vestern new
0 One 1 0 1 Action|Vestern
1 Two 0 0 1 Vestern
2 Three 1 1 0 Action|Fantasy
或者使用列表推导来连接所有不带空字符串的值:
arr = df.iloc[:, 1:].values * df.columns[1:].values
df['new'] = ['|'.join(y for y in x if y) for x in arr]
print (df)
Movie Action Fantasy Vestern new
0 One 1 0 1 Action|Vestern
1 Two 0 0 1 Vestern
2 Three 1 1 0 Action|Fantasy
性能:
In [54]: %timeit (jez1(df.copy()))
25.2 ms ± 2.31 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [55]: %timeit (jez2(df.copy()))
61.4 ms ± 769 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
In [56]: %timeit (csm(df.copy()))
1.46 s ± 35.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
df = pd.DataFrame({"Movie":['One','Two','Three'],
"Action":[1,0,1],
"Fantasy":[0,0,1],
"Vestern":[1,1,0]})
#print(df)
#30k rows
df = pd.concat([df] * 10000, ignore_index=True)
def csm(df):
cols = df.columns.tolist()[1:]
df['genres'] = df.apply(lambda x: "|".join(str(z) for z in [i for i in cols if x[i] !=0]) ,axis=1)
return df
def jez1(df):
df['new'] = df.iloc[:, 1:].dot(df.columns[1:] + '|').str.rstrip('|')
return df
def jez2(df):
arr = df.iloc[:, 1:].values * df.columns[1:].values
df['new'] = ['|'.join(y for y in x if y) for x in arr]
return df