我试图做一个简单的Tensorflow.js线性模型,但结果不一致。对于输入的任何输入值,它将返回0,或者将按预期工作(例如,如果输入11,它将返回接近110)。
页面加载后,它要么起作用,要么不起作用。如果将页面刷新3或4次,我可以使其正常工作。一旦成功,它似乎就可以继续工作。
我在做什么错了?
import {Component, OnInit} from '@angular/core';
import * as tf from '@tensorflow/tfjs';
@Component({
selector: 'app-linear-model',
templateUrl: './linear-model.component.html',
styleUrls: ['./linear-model.component.css']
})
export class LinearModelComponent implements OnInit {
title = 'Linear Model example';
linearModel: tf.Sequential;
prediction: any;
xData: number[] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10];
yData: number[] = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100];
constructor() {
}
ngOnInit() {
this.trainNewModel();
}
async trainNewModel() {
// this is based on the following tutorial:
// https://angularfirebase.com/lessons/tensorflow-js-quick-start/#Step-2-Install-Tensorflow-js
const learningRate = 0.01;
const optimizerVar = tf.train.sgd(learningRate);
// Define a model for linear regression.
this.linearModel = tf.sequential();
this.linearModel.add(tf.layers.dense({units: 1, inputShape: [1], activation: 'relu'}));
// Prepare the model for training: Specify the loss and the optimizer.
this.linearModel.compile({loss: 'meanSquaredError', optimizer: optimizerVar});
// Training data defined at top
const x = tf.tensor1d(this.xData);
const y = tf.tensor1d(this.yData);
// Train
await this.linearModel.fit(x, y, {epochs: 10});
console.log('model trained!');
}
predict(val) {
val = parseFloat(val);
const output = this.linearModel.predict(tf.tensor2d([val], [1, 1])) as any;
this.prediction = Array.from(output.dataSync())[0];
console.log(output.toString());
}
}
答案 0 :(得分:0)
您的问题与密集层内核的随机初始化有关。 给定权重的值和偏差,学习率可能导致损失没有减少。可以跟踪损失值,如果发生这种情况会降低学习率。
解决此问题的另一种方法是为密集层设置初始化矩阵。
this.linearModel.add(tf.layers.dense({units: 1, inputShape: [1], activation: 'relu', kernelInitializer:'ones'}
实时代码here