嵌套的简历与Keras深度学习

时间:2019-01-03 03:53:10

标签: machine-learning keras deep-learning cross-validation

在Keras中创建深度学习模型时,应该使用Nested CV吗?我一直在运行以下代码,这需要很长时间。我没有一个非常大的数据集(5万行),如果很重要,该任务是二进制分类。

from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.model_selection import GridSearchCV

def create_model():
# create model
    model = Sequential()
    model.add(Dense(12, input_dim=20, activation='relu'))
    model.add(Dense(1, activation='sigmoid'))
    # Compile model
    model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
    return model

estimator = KerasClassifier(build_fn=create_model, epochs=100, batch_size=5, verbose=0)

param_grid = dict(epochs=[10,20,30])
gs = GridSearchCV(estimator=estimator, param_grid=param_grid, n_jobs=-1)

results = cross_val_score(gs, X_train, y_train, cv=2)#, n_jobs = -1)
print("Results: %.2f%% (%.2f%%)" % (results.mean()*100, results.std()*100))

0 个答案:

没有答案