当我尝试对段落矢量模型应用交叉验证时,我遇到了一个错误:
import numpy as np
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import cross_val_score
from sklearn.pipeline import Pipeline
from gensim.sklearn_api import D2VTransformer
data = pd.read_csv('https://pastebin.com/raw/bSGWiBfs')
np.random.seed(0)
X_train = data.apply(lambda r: simple_preprocess(r['text'], min_len=2), axis=1)
y_train = data.label
model = D2VTransformer(size=10, min_count=1, iter=5, seed=1)
clf = LogisticRegression(random_state=0)
pipeline = Pipeline([
('vec', model),
('clf', clf)
])
pipeline.fit(X_train, y_train)
score = pipeline.score(X_train, y_train)
print("Score:", score) # This works
cval = cross_val_score(pipeline, X_train, y_train, scoring='accuracy', cv=3)
print("Cross-Validation:", cval) # This doesn't work
KeyError:0
我尝试用X_train
或cross_val_score
替换model.transform(X_train)
中的model.fit_transform(X_train)
。另外,我尝试使用原始输入数据(data.text
)代替预处理文本进行相同操作。我怀疑交叉验证的X_train
格式肯定有问题,与Pipeline的.score
函数相比,效果很好。我还注意到cross_val_score
与CountVectorizer()
一起工作。
有人发现错误吗?
答案 0 :(得分:1)
否,这与从model
进行转换无关。它与cross_val_score
有关。
cross_val_score
将根据cv
参数拆分提供的数据。为此,它将执行以下操作:
for train, test in splitter.split(X_train, y_train):
new_X_train, new_y_train = X_train[train], y_train[train]
但是您的X_train
是pandas.Series
对象,其中基于索引的选择无法像这样工作。看到这个:https://pandas.pydata.org/pandas-docs/stable/indexing.html#selection-by-position
更改此行:
X_train = data.apply(lambda r: simple_preprocess(r['text'], min_len=2), axis=1)
收件人:
# Access the internal numpy array
X_train = data.apply(lambda r: simple_preprocess(r['text'], min_len=2), axis=1).values
OR
# Convert series to list
X_train = data.apply(lambda r: simple_preprocess(r['text'], min_len=2), axis=1).tolist()