在keras中加载具有自定义损失的模型(缺少成员)

时间:2018-12-29 20:07:27

标签: python tensorflow keras google-colaboratory

我是Keras的新手,他检查了许多与负载模型有关的问题,但没有一个问题(例如eg1 eg2}使我解决问题。

很抱歉,很长的帖子,但我想提供尽可能多的数据来帮助您重现错误

我在google colab中运行代码

我有一个具有以下自定义损失函数的模型:

def wasserstein_loss(y_true, y_pred):
    return K.mean(y_true * y_pred)


def gradient_penalty_loss(y_true, y_pred, averaged_samples, gradient_penalty_weight):
    gradients = K.gradients(y_pred, averaged_samples)[0]
    gradients_sqr = K.square(gradients)
    gradients_sqr_sum = K.sum(gradients_sqr,
                          axis=np.arange(1, len(gradients_sqr.shape)))
    gradient_l2_norm = K.sqrt(gradients_sqr_sum)
    gradient_penalty = gradient_penalty_weight * K.square(1 - 
       gradient_l2_norm)
    return K.mean(gradient_penalty)

partial_gp_loss = partial(gradient_penalty_loss,
                          averaged_samples=averaged_samples,

gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)
partial_gp_loss.__name__ = 'gradient_penalty'  # Functions need names or Keras will throw an error

使用损失函数:

discriminator_model = Model(inputs=[real_samples, generator_input_for_discriminator],
                            outputs=[discriminator_output_from_real_samples,discriminator_output_from_generator,averaged_samples_out])
discriminator_model.compile(optimizer=Adam(0.0001, beta_1=0.5, beta_2=0.9),
                            loss=[wasserstein_loss,
                                  wasserstein_loss,
                                  partial_gp_loss])

我保存到模型的方式:

discriminator_model.save('D_' + str(epoch) + '.h5')
generator_model.save('G_' + str(epoch) + '.h5')

我加载模型的方式:

  generator_model = models.load_model(Gh5files[-1],custom_objects={'wasserstein_loss': wasserstein_loss})
  discriminator_model = models.load_model(Dh5files[-1],custom_objects={'wasserstein_loss': wasserstein_loss , 
                             'RandomWeightedAverage': RandomWeightedAverage , 
                             'gradient_penalty':partial_gp_loss(gradient_penalty_loss,
                                                                averaged_samples=averaged_samples,
                                                                 gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT) 
                              })

否,当我尝试上传保存的模型时,出现以下错误

Loading pretrained models
about to load follwoing files: ./G_31.h5 ./D_31.h5
/usr/local/lib/python3.6/dist-packages/keras/engine/saving.py:327: UserWarning: Error in loading the saved optimizer state. As a result, your model is starting with a freshly initialized optimizer.
  warnings.warn('Error in loading the saved optimizer '
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-30-5ed3e08a8fce> in <module>()
     12                                                                        'gradient_penalty':partial_gp_loss(gradient_penalty_loss,
     13                                                                                                           averaged_samples=averaged_samples,
---> 14                                                                                                            gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT) 
     15                                                                       })
     16 

TypeError: gradient_penalty_loss() missing 1 required positional argument: 'y_pred'

我缺少什么,如何介绍y_pred?

1 个答案:

答案 0 :(得分:1)

Keras自定义损失函数的格式必须为my_loss_function(y_true, y_pred)。您的gradient_penalty_loss函数无效,因为它具有其他参数。

正确的方法如下:

def get_gradient_penalty_loss(averaged_samples, gradient_penalty_weight):

    def gradient_penalty_loss(y_true, y_pred):
        gradients = K.gradients(y_pred, averaged_samples)[0]
        gradients_sqr = K.square(gradients)
        gradients_sqr_sum = K.sum(gradients_sqr,
                              axis=np.arange(1, len(gradients_sqr.shape)))
        gradient_l2_norm = K.sqrt(gradients_sqr_sum)
        gradient_penalty = gradient_penalty_weight * K.square(1 - 
           gradient_l2_norm)
        return K.mean(gradient_penalty)

return gradient_penalty_loss

gradient_penalty_loss= get_gradient_penalty_loss(
    gradient_penalty_loss,
    averaged_samples=averaged_samples,
    gradient_penalty_weight=GRADIENT_PENALTY_WEIGHT)

然后通过models.load_model(..., custom_objects={'gradient_penalty_loss':gradient_penalty_loss})

几乎看起来您可能正在尝试使用partial函数来执行类似的操作,但是由于您尚未定义它,因此我不知道是否是这种情况。

无论哪种方式,都存在另一个问题,因为您正在调用partial_gp_loss = partial(...)并返回gradient_penalty_loss。然后,在加载模型时,调用partial_gp_loss(...),但是此时您应该调用任何东西,而应该只是传递函数!

您收到错误TypeError: gradient_penalty_loss() missing 1 required positional argument: 'y_pred',因为此时您正在尝试执行gradient_penalty_loss,并且向其传递了两个命名参数(averaged_samplesgradient_penalty_weight) ,除了传递一个位置参数(转到y_true)并寻找缺少的第二个位置参数y_pred