我有一个数据框,它的列具有浮点值,但采用字符串格式。 如何将字符串值转换为float并将其存储在numpy数组中?
例如:
0 252485 '11.928911999999999 4.9965290000000016 0.0 0.0 ...' '2.490541199999999 -6.533438 3.7505536 4.933191...' 1 0
这是数据框的第一行 我希望它看起来像
[[11.928911999999999 4.9965290000000016 0.0 0.0 ... 2.490541199999999 -6.533438 3.7505536 4.933191...]]
答案 0 :(得分:0)
让我知道这是否对您有用:
import pandas as pd
import numpy as np
df = pd.DataFrame([{'0': '5421736', '1': '12.9839834 1.29748374 4.8293'},
{'0': '13423', '1': '19.43434 98.8934783674545 5.3456789'},
{'0': '39423', '1': '9.423283434 0.563763648 123.17637364 34.8973493740'}])
df['new_1'] = df['1'].map(lambda x: [float(i) for i in x.split()])
#test the output:
df.iloc[0]['new_1']