我正在使用这段代码来计算火花建议:
SparkSession spark = SparkSession
.builder()
.appName("SomeAppName")
.config("spark.master", "local[" + args[2] + "]")
.config("spark.local.dir",args[4])
.getOrCreate();
JavaRDD<Rating> ratingsRDD = spark
.read().textFile(args[0]).javaRDD()
.map(Rating::parseRating);
Dataset<Row> ratings = spark.createDataFrame(ratingsRDD, Rating.class);
ALS als = new ALS()
.setMaxIter(Integer.parseInt(args[3]))
.setRegParam(0.01)
.setUserCol("userId")
.setItemCol("movieId")
.setRatingCol("rating").setImplicitPrefs(true);
ALSModel model = als.fit(ratings);
model.setColdStartStrategy("drop");
Dataset<Row> rowDataset = model.recommendForAllUsers(50);
这些是使这些代码起作用的maven依赖项:
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-core_2.11</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.11</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-mllib_2.11</artifactId>
<version>2.4.0</version>
</dependency>
<dependency>
<groupId>org.scala-lang</groupId>
<artifactId>scala-library</artifactId>
<version>2.11.8</version>
</dependency>
使用此代码计算推荐数据大约需要70秒。这段代码会产生以下警告:
WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeSystemBLAS
WARN BLAS: Failed to load implementation from: com.github.fommil.netlib.NativeRefBLAS
WARN LAPACK: Failed to load implementation from: com.github.fommil.netlib.NativeSystemLAPACK
WARN LAPACK: Failed to load implementation from: com.github.fommil.netlib.NativeRefLAPACK
现在,我尝试通过在maven中添加此依赖项来启用netlib-java:
<dependency>
<groupId>com.github.fommil.netlib</groupId>
<artifactId>all</artifactId>
<version>1.1.2</version>
<type>pom</type>
</dependency>
为避免此新环境崩溃,我不得不做以下额外的技巧:
LD_PRELOAD=/usr/lib64/libopenblas.so
现在它也可以工作,它不发出任何警告,但它的工作速度较慢,平均执行相同的计算大约需要170秒。我正在CentOS上运行它。
使用本机库不是应该更快吗?有可能使其更快吗?
答案 0 :(得分:0)
首先您可以检查您的centos版本,因为centos 6可能未使用本机库,请检查this
据我所知,ALS算法自2.0版本以来已得到改进,您可以检查 Highlights in 2.2
和2.2中的源代码一样:
所以本机库没有帮助!