我需要有关Keras神经网络的帮助
我没有编程方面的知识。我想让神经网络对数据进行分类(很少有目标分类变量和大约88个预测变量)。我是通过修正错误和不断Google搜索来做到这一点的:
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import keras.models
from keras import backend as K
from keras.layers import Activation, Dense
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
df = pd.read_excel('C:/Users/quad/Desktop/obradjeni podaci/Obradjeni podaci za TF.xlsx')
df.head(2720)
data = pd.read_excel('C:/Users/quad/Desktop/obradjeni podaci/Obradjeni podaci za TF.xlsx')
train_data = pd.read_excel('C:/Users/quad/Desktop/obradjeni podaci/Obradjeni podaci za TF.xlsx')
train_df = pd.read_excel( 'C:/Users/quad/Desktop/obradjeni podaci/Obradjeni podaci za TF.xlsx' )
test_data = pd.read_excel('C:/Users/quad/Desktop/obradjeni podaci/Obradjeni podaci za TF.xlsx')
train_X = train_df.drop(columns=['Dalikonzumiratecigare'])
from keras.utils import to_categorical
train_y = to_categorical(train_df.Dalikonzumiratecigare)
from keras.models import Sequential
model = Sequential()
n_cols = train_X.shape[1]
model.add(Dense(100, activation='relu', input_shape=(n_cols,)))
model.add(Dense(100, activation='relu'))
model.add(Dense(100, activation='relu'))
model.add(Dense(8, activation='softmax'))
model.compile(optimizer=tf.train.AdamOptimizer(0.001),
loss='categorical_crossentropy',
metrics=['accuracy'])
train_labels = train_data.pop('Dalikonzumiratecigare')
test_labels = test_data.pop('Dalikonzumiratecigare')
train_data = data.sample(frac=0.8,random_state=0)
test_data = data.drop(train_data.index)
train_X = train_X.transpose(92)
test_X = test_X.transpose(92)
看来我无法解决这个问题:输出:ValueError:transpose()的pandas实现不支持'axes'参数
请帮助我。我很绝望:(
答案 0 :(得分:0)
train_X
和train_Y
是熊猫DataFrame
对象,而不是numpy ndarray
对象。在ndarray
对象上调用 transpose方法。您是在DataFrame
对象上调用它的,因此会出现错误。要从熊猫ndarray
中取出DataFrame
,请使用:
X = train_X.values
Y = train_Y.values