在Clickhouse中,我有一个表,列出了具有用户ID和标记的事件。 我的目的是从这些数据中提取会话。
会话是一组时间彼此接近的事件。举个例子,如果一个事件比前一个事件晚了半小时以上,那么它在另一个会话中。但是,如果每1500万发生一次事件,则会话可能长达12个小时。
我查看了时间段函数的文档,该文档描述了与我的相似的用例,但我不知道如何编写查询。 (https://clickhouse.yandex/docs/en/query_language/functions/date_time_functions/#timeslot)
例如:
事件:
date | user | tag
2018-12-21 00:00:00 │ user1 │ tag1
2018-12-21 00:00:00 │ user2 │ tag1
2018-12-21 00:15:00 │ user1 │ tag1
2018-12-21 00:15:00 │ user2 │ tag2
2018-12-21 00:30:00 │ user1 │ tag1
2018-12-21 00:45:00 │ user1 │ tag1
2018-12-21 01:45:00 │ user1 │ tag1
结果会话:
date | date_end | user | tag | count
2018-12-21 00:00:00 | 2018-12-21 00:45:00 | user1 | tag1 | 4
2018-12-21 00:00:00 | 2018-12-21 00:00:00 | user2 | tag1 | 1
2018-12-21 00:15:00 | 2018-12-21 00:15:00 | user2 | tag2 | 1
2018-12-21 01:45:00 | 2018-12-21 01:45:00 | user1 | tag1 | 1
答案 0 :(得分:1)
此查询依赖于默认的 timeSlot 功能,该功能将日期舍入为半小时:
SELECT user, tag, eventCount, length(sessionStartDateArray) sessionCount, sessionStartDateArray
FROM
(
SELECT
user,
tag,
-- a count of events with rounded date (remove DISTINCT-clause from nested query to get a real count of events).
count() as eventCount,
-- an array of rounded dates
groupArray(roundedDate) AS roundedDateArray,
-- an array of rounded dates shifted to 30 minutes (where 30 min taken from timeSlot-function)
arrayMap(i -> (i + 1800), roundedDateArray) AS shiftedRoundedDateArray,
-- to intersect two arrays to find the dates when sessions start
arrayFilter(x -> (has(shiftedRoundedDateArray, x) = 0), roundedDateArray) AS sessionStartDateArray
FROM
(
SELECT DISTINCT
user,
tag,
-- rounds down the time to the half hour.
timeSlot(date) AS roundedDate
FROM test01
)
GROUP BY user, tag
)
ORDER BY user, tag;
答案 1 :(得分:1)
create table C (D DateTime',' user String',' tag String) Engine = Memory;
insert into C values
('2018-12-21 00:00:00','user1','tag1'),
('2018-12-21 00:00:00','user2','tag1'),
('2018-12-21 00:15:00','user1','tag1'),
('2018-12-21 00:15:00','user2','tag2'),
('2018-12-21 00:30:00','user1','tag1'),
('2018-12-21 00:45:00','user1','tag1'),
('2018-12-21 01:45:00','user1','tag1'),
SELECT user, tag,
toDateTime(((arrayJoin(arraySplit((k, j) -> j, Arr,
arrayMap(i -> i > 1800,
arrayDifference(arraySort(groupArray(toUnixTimestamp(D))) as Arr)))))
as R)[1]) b,
toDateTime(R[-1]) e,
length(R) c
from C
group by user, tag
┌─user──┬─tag──┬───────────────────b─┬───────────────────e─┬─c─┐
│ user2 │ tag2 │ 2018-12-21 00:15:00 │ 2018-12-21 00:15:00 │ 1 │
│ user1 │ tag1 │ 2018-12-21 00:00:00 │ 2018-12-21 00:45:00 │ 4 │
│ user1 │ tag1 │ 2018-12-21 01:45:00 │ 2018-12-21 01:45:00 │ 1 │
│ user2 │ tag1 │ 2018-12-21 00:00:00 │ 2018-12-21 00:00:00 │ 1 │
└───────┴──────┴─────────────────────┴─────────────────────┴───┘