当前,我有一个包含单词和权重(tf * idf)的数据框,并且我想显示在wordcloud中按权重排列的单词。
数据框在左侧图像上。
def generate_wordcloud(words_tem):
word_cloud = WordCloud(width = 512, height = 512, background_color='white', stopwords= None, max_words=20).generate(words_tem)
plt.figure(figsize=(10,8),facecolor = 'white', edgecolor='blue')
plt.imshow(word_cloud, interpolation='bilinear')
plt.axis('off')
plt.tight_layout(pad=0)
plt.show()
tfidf = TfidfVectorizer(data, lowercase = False)
tfs = tfidf.fit_transform([data])
feature_names = tfidf.get_feature_names()
df = pd.DataFrame(tfs.T.toarray(), index=feature_names, columns= ['weight'])
df = df.sort_values(by = 'weight', ascending = False)
word_lists = df.index.values
unique_str = ' '.join(word_lists)
print(df[0:20])
generate_wordcloud(unique_str)
答案 0 :(得分:1)
最常用的软件包称为wordcloud。看到 https://github.com/amueller/word_cloud/blob/master/README.md
pip install wordcloud
您可以使用
from PIL import Image
from wordcloud import WordCloud
import matplotlib.pyplot as plt
% matplotlib inline # only if using notebooks
text = your_text_data
# Generate a word cloud image
wordcloud = WordCloud().generate(text)
# Display the generated image:
plt.imshow(wordcloud, interpolation='bilinear')
plt.axis("off")
plt.show()
您的流程与上面类似,而不是文字 #从gensim.models的TF-IDF模型开始的步骤将导入TfidfModel,但是您也可以使用,因为我们只对(term,weight)作一个元组。
tfidf = TfidfModel(vectors)
# Get TF-IDF weights
weights = tfidf[vectors[0]]
# Get terms from the dictionary and pair with weights
weights = [(dictionary[pair[0]], pair[1]) for pair in weights]
# Generate the cloud
wc = WordCloud()
wc.generate_from_frequencies(weights)
...