我有一个spark壳,该壳调用pyscript并创建了一个全局临时视图
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Spark SQL Parllel load example") \
.config("spark.jars","/u/user/graghav6/sqljdbc4.jar") \
.config("spark.dynamicAllocation.enabled","true") \
.config("spark.shuffle.service.enabled","true") \
.config("hive.exec.dynamic.partition", "true") \
.config("hive.exec.dynamic.partition.mode", "nonstrict") \
.config("spark.sql.shuffle.partitions","50") \
.config("hive.metastore.uris", "thrift://xxxxx:9083") \
.config("spark.sql.join.preferSortMergeJoin","true") \
.config("spark.sql.autoBroadcastJoinThreshold", "-1") \
.enableHiveSupport() \
.getOrCreate()
#after doing some transformation I am trying to create a global temp view of dataframe as:
df1.createGlobalTempView("df1_global_view")
spark.stop()
exit()
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Spark SQL Parllel load example") \
.config("spark.jars","/u/user/graghav6/sqljdbc4.jar") \
.config("spark.dynamicAllocation.enabled","true") \
.config("spark.shuffle.service.enabled","true") \
.config("hive.exec.dynamic.partition", "true") \
.config("hive.exec.dynamic.partition.mode", "nonstrict") \
.config("spark.sql.shuffle.partitions","50") \
.config("hive.metastore.uris", "thrift://xxxx:9083") \
.config("spark.sql.join.preferSortMergeJoin","true") \
.config("spark.sql.autoBroadcastJoinThreshold", "-1") \
.enableHiveSupport() \
.getOrCreate()
newSparkSession = spark.newSession()
#reading dta from the global temp view
data_df_save = newSparkSession.sql(""" select * from global_temp.df1_global_view""")
data_df_save.show()
newSparkSession.close()
exit()
我遇到以下错误:
Stdoutput pyspark.sql.utils.AnalysisException: u"Table or view not found: `global_temp`.`df1_global_view`; line 1 pos 15;\n'Project [*]\n+- 'UnresolvedRelation `global_temp`.`df1_global_view`\n"
好像我缺少什么。如何在多个会话中共享相同的全局临时视图? 我是否在第一个Spark Shell中错误地关闭了Spark会话? 我已经在堆栈溢出中找到了几个答案,但是无法找出原因。
答案 0 :(得分:1)
您使用的是LOCAL_AIDL_INCLUDES += $(A_APP_PATH)/src
,因此它是一个临时视图,在您关闭应用程序后将无法使用。
换句话说,它将在另一个df = pd.DataFrame({'A':['here goes the title', 'tt', 'we have title here'],
'B': ['ty', 'title', 'complex']})
df
+---+---------------------+---------+
| | A | B |
+---+---------------------+---------+
| 0 | here goes the title | ty |
| 1 | tt | title |
| 2 | we have title here | complex |
+---+---------------------+---------+
idx = df.apply(lambda x: x.str.contains('title'))
col_idx = []
for i in range(df.shape[1]):
col_idx.append(df.iloc[:,i][idx.iloc[:,i]].index.tolist())
out = []
cnt = 0
for i in col_idx:
for j in range(len(i)):
out.append((i[j], cnt))
cnt += 1
out
# [(0, 0), (2, 0), (1, 1)] # Expected output
中可用,但在另一个PySpark应用程序中不可用。