我正在修改Xception模型以使用ImageNet权重,但使用自己的类数。我这样做是这样的:
image_input = Input(shape=(None, None, 3), name='image_input')
x = Lambda(lambda image: tf.image.resize_images(image, (128, 128)))(image_input)
x = Xception(include_top=False)(x)
x = GlobalAveragePooling2D(name='avg_pool')(x)
x = Dense(NUM_CLASSES, activation='softmax', name='predictions')(x)
model = Model(inputs=image_input, outputs=x)
print(model.summary())
当我打印model.summary()
时,我得到的输出是:
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
image_input (InputLayer) (None, None, None, 3) 0
_________________________________________________________________
lambda (Lambda) (None, 128, 128, 3) 0
_________________________________________________________________
xception (Model) multiple 20861480
_________________________________________________________________
avg_pool (GlobalAveragePooli (None, 2048) 0
_________________________________________________________________
predictions (Dense) (None, 10) 20490
=================================================================
Total params: 20,881,970
Trainable params: 20,827,442
Non-trainable params: 54,528
_________________________________________________________________
None
那么有什么方法可以使摘要包含有关Xception网络各层的中间信息?