我正在尝试建立一个VAE网络,在该网络中,我希望模型以不同的方式执行不同的操作。我有三种模式:“训练”,“相同”和“不同”,一个名为插值(模式)的函数根据该模式执行不同的操作。我的代码如下:
import tensorflow as tf
### some code here
mode = tf.placeholder(dtype = tf.string, name = "mode")
def interpolation(mode):
if mode == "train":
# do something
print("enter train mode")
elif mode == "same":
# do other things
print("enter same mode")
else:
# do other things
print("enter different mode")
# some other code here
sess.run(feed_dict = {mode: "train"})
sess.run(feed_dict = {mode: "same"})
sess.run(feed_dict = {mode: "different"})
但是输出看起来像:
enter different mode
enter different mode
enter different mode
表示传入的模式不会更改条件。我做错了什么?如何通过字符串参数选择模式?
答案 0 :(得分:3)
第一种方法:您可以使用本机Tensorflow switch-case选择其他模式。例如,假设您有三种情况,则可以执行以下操作:
import tensorflow as tf
mode = tf.placeholder(tf.string, shape=[], name="mode")
def cond1():
return tf.constant('same')
def cond2():
return tf.constant('train')
def cond3():
return tf.constant('diff')
def cond4():
return tf.constant('default')
y = tf.case({tf.equal(mode, 'same'): cond1,
tf.equal(mode, 'train'): cond2,
tf.equal(mode, 'diff'): cond3},
default=cond4, exclusive=True)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
print(sess.run(y, feed_dict={mode: "train"}))
print(sess.run(y, feed_dict={mode: "same"}))
第二种方法:这是使用新的AutoGraph API的另一种方法:
import tensorflow as tf
from tensorflow.contrib import autograph as ag
m = tf.placeholder(dtype=tf.string, name='mode')
def interpolation(mode):
if mode == "train":
return 'I am train'
elif mode == "same":
return 'I am same'
else:
return 'I am different'
cond_func = ag.to_graph(interpolation)(m)
with tf.Session() as sess:
print(sess.run(cond_func, feed_dict={m: 'same'}))