将日期重新编码为主题内的学习日

时间:2018-12-17 01:37:21

标签: r recode

我得到的数据显示,受试者在6到7天内每天完成多次评分。每天的收视次数不同。数据集包括主题ID,日期和等级。我想创建一个新变量,将每个主题的日期重新编码为“学习日” ---所以1表示收视率的第一天,2表示收视率的第二天,等等。

例如,我想这样做:

id  Date    Rating
1   10/20/2018  2
1   10/20/2018  3
1   10/20/2018  5
1   10/21/2018  1
1   10/21/2018  7
1   10/21/2018  9
1   10/22/2018  4
1   10/22/2018  5
1   10/22/2018  9
2   11/15/2018  1
2   11/15/2018  3
2   11/15/2018  4
2   11/16/2018  3
2   11/16/2018  1
2   11/17/2018  0
2   11/17/2018  2
2   11/17/2018  9

最后得到这个:

id  Day Date    Rating
1   1   10/20/2018  2
1   1   10/20/2018  3
1   1   10/20/2018  5
1   2   10/21/2018  1
1   2   10/21/2018  7
1   2   10/21/2018  9
1   3   10/22/2018  4
1   3   10/22/2018  5
1   3   10/22/2018  9
2   1   11/15/2018  1
2   1   11/15/2018  3
2   1   11/15/2018  4
2   2   11/16/2018  3
2   2   11/16/2018  1
2   3   11/17/2018  0
2   3   11/17/2018  2
2   3   11/17/2018  9

我本来打算建立某种循环,但是我认为值得一问的是,是否有一种更有效的方法来实现这一目标。有什么功能可以让我自动执行此类操作?非常感谢您的任何建议。

2 个答案:

答案 0 :(得分:2)

由于您想在每个.git/config之后重设计数,因此此问题有些不同。

仅使用基数R,我们可以基于id split Date,然后创建每个不同组的计数。

id

我不知道我怎么想念这个,但是感谢@thelatemail,他提醒说这和

基本相同
df$Day <- unlist(sapply(split(df$Date, df$id), function(x) match(x,unique(x))))


df
#   id       Date Rating Day
#1   1 10/20/2018      2   1
#2   1 10/20/2018      3   1
#3   1 10/20/2018      5   1
#4   1 10/21/2018      1   2
#5   1 10/21/2018      7   2
#6   1 10/21/2018      9   2
#7   1 10/22/2018      4   3
#8   1 10/22/2018      5   3
#9   1 10/22/2018      9   3
#10  2 11/15/2018      1   1
#11  2 11/15/2018      3   1
#12  2 11/15/2018      4   1
#13  2 11/16/2018      3   2
#14  2 11/16/2018      1   2
#15  2 11/17/2018      0   3
#16  2 11/17/2018      2   3
#17  2 11/17/2018      9   3

AND

library(dplyr)
df %>%
  group_by(id) %>%
  mutate(Day = match(Date, unique(Date)))

答案 1 :(得分:1)

如果您希望使用dplyr稍有改动的版本...。您可以使用日期列并将其转换为数字日期,然后操纵该数字以得到所需的结果

library(tidyverse)
library(lubridate)

df <- data_frame(id=c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2),
                     Date= c('10/20/2018', '10/20/2018', '10/20/2018', '10/21/2018', '10/21/2018', '10/21/2018',
                             '10/22/2018', '10/22/2018', '10/22/2018','11/15/2018', '11/15/2018', '11/15/2018',
                             '11/16/2018', '11/16/2018', '11/17/2018', '11/17/2018', '11/17/2018'), 
                     Rating=c(2,3,5,1,7,9,4,5,9,1,3,4,3,1,0,2,9))

df %>%
  group_by(id) %>%
  mutate(
    Date = mdy(Date),
    Day = as.numeric(Date),
    Day = Day-min(Day)+1)

# A tibble: 17 x 4
# Groups:   id [2]
      id Date       Rating   Day
   <dbl> <date>      <dbl> <dbl>
 1     1 2018-10-20      2     1
 2     1 2018-10-20      3     1
 3     1 2018-10-20      5     1
 4     1 2018-10-21      1     2
 5     1 2018-10-21      7     2
 6     1 2018-10-21      9     2
 7     1 2018-10-22      4     3
 8     1 2018-10-22      5     3
 9     1 2018-10-22      9     3
10     2 2018-11-15      1     1
11     2 2018-11-15      3     1
12     2 2018-11-15      4     1
13     2 2018-11-16      3     2
14     2 2018-11-16      1     2
15     2 2018-11-17      0     3
16     2 2018-11-17      2     3
17     2 2018-11-17      9     3