我得到的数据显示,受试者在6到7天内每天完成多次评分。每天的收视次数不同。数据集包括主题ID,日期和等级。我想创建一个新变量,将每个主题的日期重新编码为“学习日” ---所以1表示收视率的第一天,2表示收视率的第二天,等等。
例如,我想这样做:
id Date Rating
1 10/20/2018 2
1 10/20/2018 3
1 10/20/2018 5
1 10/21/2018 1
1 10/21/2018 7
1 10/21/2018 9
1 10/22/2018 4
1 10/22/2018 5
1 10/22/2018 9
2 11/15/2018 1
2 11/15/2018 3
2 11/15/2018 4
2 11/16/2018 3
2 11/16/2018 1
2 11/17/2018 0
2 11/17/2018 2
2 11/17/2018 9
最后得到这个:
id Day Date Rating
1 1 10/20/2018 2
1 1 10/20/2018 3
1 1 10/20/2018 5
1 2 10/21/2018 1
1 2 10/21/2018 7
1 2 10/21/2018 9
1 3 10/22/2018 4
1 3 10/22/2018 5
1 3 10/22/2018 9
2 1 11/15/2018 1
2 1 11/15/2018 3
2 1 11/15/2018 4
2 2 11/16/2018 3
2 2 11/16/2018 1
2 3 11/17/2018 0
2 3 11/17/2018 2
2 3 11/17/2018 9
我本来打算建立某种循环,但是我认为值得一问的是,是否有一种更有效的方法来实现这一目标。有什么功能可以让我自动执行此类操作?非常感谢您的任何建议。
答案 0 :(得分:2)
由于您想在每个.git/config
之后重设计数,因此此问题有些不同。
仅使用基数R,我们可以基于id
split
Date
,然后创建每个不同组的计数。
id
我不知道我怎么想念这个,但是感谢@thelatemail,他提醒说这和
基本相同df$Day <- unlist(sapply(split(df$Date, df$id), function(x) match(x,unique(x))))
df
# id Date Rating Day
#1 1 10/20/2018 2 1
#2 1 10/20/2018 3 1
#3 1 10/20/2018 5 1
#4 1 10/21/2018 1 2
#5 1 10/21/2018 7 2
#6 1 10/21/2018 9 2
#7 1 10/22/2018 4 3
#8 1 10/22/2018 5 3
#9 1 10/22/2018 9 3
#10 2 11/15/2018 1 1
#11 2 11/15/2018 3 1
#12 2 11/15/2018 4 1
#13 2 11/16/2018 3 2
#14 2 11/16/2018 1 2
#15 2 11/17/2018 0 3
#16 2 11/17/2018 2 3
#17 2 11/17/2018 9 3
AND
library(dplyr)
df %>%
group_by(id) %>%
mutate(Day = match(Date, unique(Date)))
答案 1 :(得分:1)
如果您希望使用dplyr
稍有改动的版本...。您可以使用日期列并将其转换为数字日期,然后操纵该数字以得到所需的结果
library(tidyverse)
library(lubridate)
df <- data_frame(id=c(1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2),
Date= c('10/20/2018', '10/20/2018', '10/20/2018', '10/21/2018', '10/21/2018', '10/21/2018',
'10/22/2018', '10/22/2018', '10/22/2018','11/15/2018', '11/15/2018', '11/15/2018',
'11/16/2018', '11/16/2018', '11/17/2018', '11/17/2018', '11/17/2018'),
Rating=c(2,3,5,1,7,9,4,5,9,1,3,4,3,1,0,2,9))
df %>%
group_by(id) %>%
mutate(
Date = mdy(Date),
Day = as.numeric(Date),
Day = Day-min(Day)+1)
# A tibble: 17 x 4
# Groups: id [2]
id Date Rating Day
<dbl> <date> <dbl> <dbl>
1 1 2018-10-20 2 1
2 1 2018-10-20 3 1
3 1 2018-10-20 5 1
4 1 2018-10-21 1 2
5 1 2018-10-21 7 2
6 1 2018-10-21 9 2
7 1 2018-10-22 4 3
8 1 2018-10-22 5 3
9 1 2018-10-22 9 3
10 2 2018-11-15 1 1
11 2 2018-11-15 3 1
12 2 2018-11-15 4 1
13 2 2018-11-16 3 2
14 2 2018-11-16 1 2
15 2 2018-11-17 0 3
16 2 2018-11-17 2 3
17 2 2018-11-17 9 3