如何解决“不能被视为有效集合”的问题

时间:2018-12-13 12:53:43

标签: python django scikit-learn

我在下面运行此代码,但可能出现此行代码

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state, test_size=test_size)

我从该平台上发现了类似的问题,但是提供的解决方案与我的问题无关。显示的错误是:

Singleton array array(0) cannot be considered a valid collection

请帮助我。

@permission_required('admin.can_add_log_entry')
def upload_file(request):
    template='upload_file.html'
    if request.method == 'GET':
        return render(request, template)
    CSV_file=request.FILES['csv_file']
    if not CSV_file.name.endswith('.csv'):
        messages.error(request, 'This is not a CSV file')
        # return HttpResponseRedirect(reverse('add_pull_requests'))
    data_set=CSV_file.read().decode('UTF-8')
    io_string=StringIO(data_set)
    next(io_string)
    dataset=csv.reader(io_string, skipinitialspace=True, delimiter=',')
    csv_list=list(dataset)

    # prediction_dataset=[]
    for row in csv_list:
        if row[11]=='Non-Reopened':
            row[11]=0
        else:
            row[11] = 1
        if row[9]=='Rejected':
            row[9]=0
        else:
            row[9]=1
    prediction_dataset = [row[3], row[4], row[5], row[6], row[7], row[8], row[9], row[10]]
    X = [prediction_dataset]
    y = row[11]
    print(X)
    print(y)
    test_size = 0.2
    random_state = 5
    clf = tree.DecisionTreeClassifier()
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=random_state, test_size=test_size)
    # clf = tree.DecisionTreeClassifier()
    clf = clf.fit(X_train, y_train)
    # y_pred = clf.predict(X_test)

    print(accuracy= accuracy_score(y_test,y_pred)*100)


    return render(request, template,{"csv_list": csv_list})

1 个答案:

答案 0 :(得分:0)

我首先通过import pandas as pd解决了问题,然后用dataset=csv.reader(io_string, skipinitialspace=True, delimiter=',')替换了这行代码dataset=pd.read_csv(CSV_file)。所以它现在正在工作。

谢谢