我想使用python将阈值应用于图像中的像素。我在哪里弄错了?

时间:2018-12-10 20:11:43

标签: python image image-processing threshold image-thresholding

我想生成一个阈值输出。还有我的错误:

  

img_thres = n_pix [y,x]
  TypeError:“ int”对象不可下标

import cv2
import numpy as np
import matplotlib as plt

img = cv2.imread("cicek.png",0)
img_rgb = cv2.imread("cicek.png")

h = img.shape[0]
w = img.shape[1]

img_thres= []
n_pix = 0
# loop over the image, pixel by pixel
for y in range(0, h):
    for x in range(0, w):
        # threshold the pixel
        pixel = img[y, x]
        if pixel < 0.5:
            n_pix = 0
        img_thres = n_pix[y, x]

cv2.imshow("cicek", img_thres)

3 个答案:

答案 0 :(得分:2)

由于您已经在使用 OpenCV ,因此也可以使用其优化的SIMD代码进行阈值设置。它不仅更短,更容易维护,而且速度更快。看起来像这样:

_, thres = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)

是的,就是这样!那将替换您所有的代码。


基准测试和演示

我大量借鉴其他答案,

  • 使用双for循环的方法,
  • 一种Numpy方法,
  • 我建议的OpenCV方法

并在 IPython 内运行了一些计时测试。因此,我将此代码另存为thresh.py

#!/usr/bin/env python3

import cv2
import numpy as np

def method1(img):
    """Double loop over pixels"""
    h = img.shape[0]
    w = img.shape[1]

    img_thres= np.zeros((h,w))
    # loop over the image, pixel by pixel
    for y in range(0, h):
        for x in range(0, w):
            # threshold the pixel
            pixel = img[y, x]
            img_thres[y, x] = 0 if pixel < 128 else pixel
    return img_thres

def method2(img):
    """Numpy indexing"""
    img_thres = img
    img_thres[ img < 128 ] = 0
    return img_thres

def method3(img):
    """OpenCV thresholding"""
    _, thres = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
    return thres

img = cv2.imread("gradient.png",cv2.IMREAD_GRAYSCALE)

然后,我启动了 IPython 并做到了:

%load thresh.py

然后,我对三种方法进行计时:

%timeit method1(img)
81 ms ± 545 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

%timeit method2(img)
24.5 µs ± 818 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

%timeit method3(img)
3.03 µs ± 79.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

请注意,第一个结果以毫秒为单位,而其他两个结果以微秒为单位。 Numpy版本比for循环快3,300倍,而OpenCV版本比快循环快27,000倍!!!

您可以像这样添加图像中的差异来检查它们是否产生相同的结果:

np.sum(method1(img)-method3(img))
0.0 

起始图片:

enter image description here

结果图片:

enter image description here

答案 1 :(得分:1)

要对图像应用阈值,只需执行以下操作:

img_thres = img >= 0.5

您不需要任何循环即可进行阈值设置。

如果从您的代码看来,您不想阈值,而是将所有值都小于0.5的像素设置为0到0,则可以将因“逻辑索引”的阈值而产生的二进制图像用作如下:

img_thres = img
img_thres[ img < 0.5 ] = 0

使用NumPy向量化操作的代码总是比在每个数组元素上显式循环的代码更有效。

答案 2 :(得分:1)

尝试一下

import cv2
import numpy as np
import matplotlib as plt

img = cv2.imread("cicek.png",0)
img_rgb = cv2.imread("cicek.png")

h = img.shape[0]
w = img.shape[1]

img_thres= np.zeros((h,w))
n_pix = 0
# loop over the image, pixel by pixel
for y in range(0, h):
    for x in range(0, w):
        # threshold the pixel
        pixel = img[y, x]
        if pixel < 128: # because pixel value will be between 0-255.
            n_pix = 0
        else:
            n_pix = pixel

        img_thres[y, x] = n_pix 

cv2.imshow("cicek", img_thres)