我有一个带有ID,开始日期,结束日期以及收入和费用值的数据框。
table <- data.frame(id = c(1, 2, 3),
start = c("2018-01-01", "2018-02-05", "2018-05-30"),
end = c("2018-01-31", "2018-03-26", "2018-08-31"),
income = c(100, 225, 399),
costs = c(37, 98, 113))
table$start <- as.Date(table$start)
table$end <- as.Date(table$end)
这将导致:
id start end income costs
1 2018-01-01 2018-01-31 100 37
2 2018-02-05 2018-03-26 225 98
3 2018-05-30 2018-08-31 399 113
就像question这样,其中一些时间跨度为n个月,我想按月汇总收入和成本。对于与跨越两个,三个月或三个月以上的时间段相关的金额,我想在两个,三个月或n个月之间线性分配它们。
问题是我还想保留id,并对两个变量(不是像前面问的问题一样)执行操作,这会使整个事情变得复杂。
我期望得到的是下表:
id date income costs
1 2018-01 100 37
2 2018-02 108 47.04
2 2018-03 117 50.96
3 2018-05 8.489362 2.404255
3 2018-06 127.340426 36.063830
3 2018-07 131.585106 37.265957
3 2018-08 131.585106 37.265957
我尝试在由ID和以下功能创建的数据帧列表上使用rbindlist:
explode <- function(start, end, income) {
dates <- seq(start, end, "day")
n <- length(dates)
rowsum(rep(income, n) / n, format(dates, "%Y-%m"))
}
Map(explode, table$start, table$end, table$income)
但是,当然,它仅返回内部和未命名列表中的rowum值。
任何帮助将不胜感激。谢谢!
答案 0 :(得分:1)
我会去data.table
:
library(data.table)
table_aggregated <- setDT(table)[
, .(id = id, income = income, costs = costs, day_var = seq(start, end, "day")), by = 1:nrow(table)][
, `:=` (income_day = income / .N,
costs_day = costs / .N,
date = format(day_var, "%Y-%m")), by = id][
, .(income = sum(income_day),
costs = sum(costs_day)), by = .(id, date)]
输出:
id date income costs
1: 1 2018-01 100.000000 37.000000
2: 2 2018-02 108.000000 47.040000
3: 2 2018-03 117.000000 50.960000
4: 3 2018-05 8.489362 2.404255
5: 3 2018-06 127.340426 36.063830
6: 3 2018-07 131.585106 37.265957
7: 3 2018-08 131.585106 37.265957
答案 1 :(得分:1)
您的解决方案可能已经奏效。只需在Map
中添加一个新参数,并用cbind
扩展功能,以合并收入和成本,然后rbind
列表由Map
生成:
explode <- function(start, end, income, costs) {
dates <- seq(start, end, "day")
n <- length(dates)
cbind.data.frame(
date = format(start, "%Y-%m"),
income = rowsum(rep(income, n) / n, format(dates, "%Y-%m")),
costs = rowsum(rep(costs, n) / n, format(dates, "%Y-%m"))
)
}
data_list <- Map(explode, table$start, table$end, table$income, table$costs)
final_df <- do.call(rbind, data_list)
final_df
# date income costs
# 2018-01 100.000000 37.000000
# 2018-02 108.000000 47.040000
# 2018-03 117.000000 50.960000
# 2018-05 8.489362 2.404255
# 2018-06 127.340426 36.063830
# 2018-07 131.585106 37.265957
# 2018-08 131.585106 37.265957