我正在尝试从多个路径将一些avro文件读取到DataFrame中。
假设我的路径是"s3a://bucket_name/path/to/file/year=18/month=11/day=01"
在此路径下,我还有两个分区,例如country=XX/region=XX
我想一次读取多个日期,而无需明确命名国家和地区分区。另外,我希望国家和地区成为此DataFrame中的列。
sqlContext.read.format("com.databricks.spark.avro").load("s3a://bucket_name/path/to/file/year=18/month=11/day=01")
由于我仅读取一条路径,因此此行效果很好。它可以检测国家和地区分区并推断其模式。
当我尝试读取多个日期时,说
val paths = Seq("s3a://bucket_name/path/to/file/year=18/month=11/day=01", "s3a://bucket_name/path/to/file/year=18/month=11/day=02")
sqlContext.read.format("com.databricks.spark.avro").load(paths:_*)
我收到此错误:
18/12/03 03:13:53 WARN S3AbortableInputStream: Not all bytes were read from the S3ObjectInputStream, aborting HTTP connection. This is likely an error and may result insub-optimal behavior. Request only the bytes you need via a ranged GET or drain the input stream after use.
18/12/03 03:13:53 WARN S3AbortableInputStream: Not all bytes were read from the S3ObjectInputStream, aborting HTTP connection. This is likely an error and may result in sub-optimal behavior. Request only the bytes you need via a ranged GET or drain the input stream after use.
java.lang.AssertionError: assertion failed: Conflicting directory structures detected. Suspicious paths:?
s3a://bucket_name/path/to/file/year=18/month=11/day=02
s3a://bucket_name/path/to/file/year=18/month=11/day=01
If provided paths are partition directories, please set "basePath" in the options of the data source to specify the root directory of the table. If there are multiple root directories, please load them separately and then union them.
at scala.Predef$.assert(Predef.scala:179)
at org.apache.spark.sql.execution.datasources.PartitioningUtils$.parsePartitions(PartitioningUtils.scala:106)
at org.apache.spark.sql.sources.HadoopFsRelation.org$apache$spark$sql$sources$HadoopFsRelation$$discoverPartitions(interfaces.scala:621)
at org.apache.spark.sql.sources.HadoopFsRelation$$anonfun$partitionSpec$3.apply(interfaces.scala:526)
at org.apache.spark.sql.sources.HadoopFsRelation$$anonfun$partitionSpec$3.apply(interfaces.scala:525)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.sources.HadoopFsRelation.partitionSpec(interfaces.scala:524)
at org.apache.spark.sql.sources.HadoopFsRelation$$anonfun$partitionColumns$1.apply(interfaces.scala:578)
at org.apache.spark.sql.sources.HadoopFsRelation$$anonfun$partitionColumns$1.apply(interfaces.scala:578)
at scala.Option.getOrElse(Option.scala:120)
at org.apache.spark.sql.sources.HadoopFsRelation.partitionColumns(interfaces.scala:578)
at org.apache.spark.sql.sources.HadoopFsRelation.schema$lzycompute(interfaces.scala:637)
at org.apache.spark.sql.sources.HadoopFsRelation.schema(interfaces.scala:635)
at org.apache.spark.sql.execution.datasources.LogicalRelation.<init>(LogicalRelation.scala:39)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:136)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:25)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:30)
at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:32)
at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:34)
at $iwC$$iwC$$iwC$$iwC.<init>(<console>:36)
at $iwC$$iwC$$iwC.<init>(<console>:38)
at $iwC$$iwC.<init>(<console>:40)
at $iwC.<init>(<console>:42)
at <init>(<console>:44)
at .<init>(<console>:48)
at .<clinit>(<console>)
at .<init>(<console>:7)
at .<clinit>(<console>)
at $print(<console>)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1045)
at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1326)
at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:821)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:852)
at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:800)
at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1064)
at org.apache.spark.repl.Main$.main(Main.scala:35)
at org.apache.spark.repl.Main.main(Main.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:730)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
很显然,我不能使用basePath,因为路径不共享一个。我还尝试在每个路径的末尾使用/ *,这实际上有效,但是完全忽略了国家和地区分区。
我可以逐条阅读路径并将其合并,但是我感觉好像缺少了一些东西。
您知道为什么它仅适用于单个路径以及如何使其适用于多个路径吗?
答案 0 :(得分:2)
真的希望所有错误消息都一样清晰-If provided paths are partition directories, please set "basePath" in the options of the data source to specify the root directory of the table. If there are multiple root directories, please load them separately and then union them.
相对路径year=18/month=11/day=01
是由于分区引起的,还是只是使用了相同的约定?
如果前者是正确的,那么您应该只阅读s3a://bucket_name/path/to/file/
,并使用谓词过滤所需的日期。或者,也许是错误所提示的,您可以尝试sqlContext.read.option("basePath","s3a://bucket_name/path/to/file/").format("com.databricks.spark.avro").load(paths:_*)
,其中路径是相对的
如果后者为true,则应分别查询每个对象,并将unionAll
应用于数据帧(如错误消息所示)。在这种情况下,即使您在编写数据时未使用partitionBy,也可能将年/月/日视为分区列也可以正常工作。
答案 1 :(得分:1)
老问题,但这是我在类似情况下最终要做的事情
spark.read.parquet(paths:_*)
.withColumn("year", regexp_extract(input_file_name, "year=(.+?)/", 1))
.withColumn("month", regexp_extract(input_file_name, "month=(.+?)/", 1))
.withColumn("day", regexp_extract(input_file_name, "day=(.+?)/", 1))
在具有静态分区结构时有效。谁要挑战将其扩展为动态(即解析出形式为'x = y / z = c'的任意分区结构并将其转换为列)?