我试图预测收盘前剩余几天的销售情况。我正在使用线性回归来基于过去7天的平均值(除其他因素外)预测每一天。但是,当剩下的唯一一天是休息日时,那么我想使用其他函数来预测该天。该模型还必须单独更新每日销售额,以便每个预测都可以用于下一次迭代。
下面是我尝试编写一个循环,该循环将连续预测剩余每一天的每笔交易。
### loop attempt
nnextdp <- DataforQuestion[c(74),] #first na data point -- row 74, column Day6 for reference
while (is.na(DataforQuestion[c(nnextdp),]) = TRUE) { #while data point is NA, continue the loop
if(nnextdp(head != Day0)) {Prior_week_average <- mean(nnextdp + right(7) - nnextdp) #set wkprioravg to the last 7 days of sales
lmDayX <- lm(Day[right(head(nnextdp),1)] ~ Month + CDoW +
Prior_week_average, DataforQuestion) #if datapoint is not in column Day0, let's use the lmDayX function
predict(lmDayX, newdata = nnextdp) #predict the data point's value & add it to the data set
nnextdp = nnextdp[c(-1)] #move the data point to the next na space
} else if (nnextdp(head = Day0)) {Total_Not_Including_CSales <- aggreagate(Day1...Day203) #if data point header is Day0, then sum the day1 - Day203 to get the total sales prior to close day
lmDay0 <- lm(Day0 ~ Month + CDoW + Day1Sales + Total_Not_Including_CSales, DataforQuestion) #if data point header is Day0, then run the other regression model
predict(lmDay0, newdata = nnextdp) #lmDay0 to predict the sales & fill in the value to the NA space
nnextdp = nnextdp[c(-1)] #move the data point to be predicted to the next NA space to the left of the previous
} else
print("complete") #else print completed
}
基本上,我需要使用循环来预测Day0…... Day74列中的NA值的每日销售额。但前提是之前的非NA数据至少有7个销售天。
我在此处提供了指向数据集的链接。
感谢您的帮助,请告诉我是否有什么可以澄清的内容!