python numpy错误“ TypeError:'numpy.float64'对象无法解释为整数”

时间:2018-11-28 14:48:33

标签: python python-3.x numpy spectrogram

我想将.wav文件转换为频谱图。

所以我用了这个Python文件。

import glob
import numpy as np
from matplotlib import pyplot as plt
import scipy.io.wavfile as wav
from numpy.lib import stride_tricks

""" short time fourier transform of audio signal """
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
    win = window(frameSize)
    hopSize = int(frameSize - np.floor(overlapFac * frameSize))

    # zeros at beginning (thus center of 1st window should be for sample nr. 0)
    samples = np.append(np.zeros(np.floor(frameSize/2.0)), sig)
    # cols for windowing
    cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
    # zeros at end (thus samples can be fully covered by frames)
    samples = np.append(samples, np.zeros(frameSize))

    frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
    frames *= win

    return np.fft.rfft(frames)    

""" scale frequency axis logarithmically """    
def logscale_spec(spec, sr=44100, factor=20.):
    timebins, freqbins = np.shape(spec)

    scale = np.linspace(0, 1, freqbins) ** factor
    scale *= (freqbins-1)/max(scale)
    scale = np.unique(np.round(scale))

    # create spectrogram with new freq bins
    newspec = np.complex128(np.zeros([timebins, len(scale)]))
    for i in range(0, len(scale)):
        if i == len(scale)-1:
            newspec[:,i] = np.sum(spec[:,scale[i]:], axis=1)
        else:        
            newspec[:,i] = np.sum(spec[:,scale[i]:scale[i+1]], axis=1)

    # list center freq of bins
    allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
    freqs = []
    for i in range(0, len(scale)):
        if i == len(scale)-1:
            freqs += [np.mean(allfreqs[scale[i]:])]
        else:
            freqs += [np.mean(allfreqs[scale[i]:scale[i+1]])]

    return newspec, freqs

""" plot spectrogram"""
def plotstft(audiopath, binsize=2**10, plotpath=None, colormap="jet"):
    samplerate, samples = wav.read(audiopath)
    s = stft(samples, binsize)

    sshow, freq = logscale_spec(s, factor=1.0, sr=samplerate)
    ims = 20.*np.log10(np.abs(sshow)/10e-6) # amplitude to decibel

    timebins, freqbins = np.shape(ims)

    plt.figure(figsize=(15, 7.5))
    plt.imshow(np.transpose(ims), origin="lower", aspect="auto", cmap=colormap, interpolation="none")
    plt.colorbar()

    plt.xlabel("time (s)")
    plt.ylabel("frequency (hz)")
    plt.xlim([0, timebins-1])
    plt.ylim([0, freqbins])

    xlocs = np.float32(np.linspace(0, timebins-1, 5))
    plt.xticks(xlocs, ["%.02f" % l for l in ((xlocs*len(samples)/timebins)+(0.5*binsize))/samplerate])
    ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10)))
    plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])

    if plotpath:
        plt.savefig(plotpath, bbox_inches="tight")
    else:
        plt.show()

    plt.clf()


if __name__ == '__main__':
    path='../tf_files/data_audio/'

    folders=glob.glob(path+'*')
    for folder in folders:
        waves = glob.glob(folder+'/' + '*.wav')
        print (waves)
        if len(waves) == 0:
            continue
        for f in waves:
            #try:
            print ("Generating spectrograms..")
            plotstft(f)
            #except Exception as e:
                #print ("Something went wrong while generating spectrogram:")

但是,结果与我的预期不同。

  

['../ tf_files / data_audio / test_wav_files / 22601-8-0-0_2(volume).wav',   '../tf_files/data_audio/test_wav_files/22601-8-0-6_2(volume).wav',   '../tf_files/data_audio/test_wav_files/518-4-0-0(volume).wav',   '../tf_files/data_audio/test_wav_files/drill1.wav',   '../tf_files/data_audio/test_wav_files/chunk0.wav',   '../tf_files/data_audio/test_wav_files/siren2.wav',   '../tf_files/data_audio/test_wav_files/bark2.wav',   '../tf_files/data_audio/test_wav_files/bark3.wav',   '../tf_files/data_audio/test_wav_files/14111-4-0-0_2(volume).wav',   '../tf_files/data_audio/test_wav_files/drill2.wav',   '../tf_files/data_audio/test_wav_files/22601-8-0-3_2(volume).wav',   '../tf_files/data_audio/test_wav_files/siren1.wav',   '../tf_files/data_audio/test_wav_files/siren3.wav',   '../tf_files/data_audio/test_wav_files/518-4-0-3(volume).wav',   '../tf_files/data_audio/test_wav_files/drill3.wav',   '../tf_files/data_audio/test_wav_files/4910-3-0-0_2(volume).wav',   '../tf_files/data_audio/test_wav_files/344-3-5-0(volume).wav',   '../tf_files/data_audio/test_wav_files/bark1.wav',   '../ tf_files / data_audio / test_wav_files / 344-3-1-0(volume).wav']

     

生成频谱图。

     

回溯(最近通话最近一次):

     

文件“ z_make_spectrogram.py”,第95行,在       plotstft(f)文件“ z_make_spectrogram.py”,位于plotstft中的第54行       s = stft(samples,binsize)文件“ z_make_spectrogram.py”,第13行,在stft中       样本= np.append(np.zeros(np.floor(frameSize / 2.0)),sig)

     

TypeError:“ numpy.float64”对象无法解释为整数   sys.excepthook错误:

     

回溯(最近通话最近):文件   “ /usr/lib/python3/dist-packages/apport_python_hook.py”,第63行,在   apport_excepthook       从apport.fileutils导入可能性文件打包的get_recent_crashes文件“ /usr/lib/python3/dist-packages/apport/init.py”,第5行,在          从apport.report导入报告文件“ /usr/lib/python3/dist-packages/apport/report.py”,第30行,在          import apport.fileutils文件“ /usr/lib/python3/dist-packages/apport/fileutils.py”,第23行,在          从apport.packaging_impl导入作为包装文件“ /usr/lib/python3/dist-packages/apport/packaging_impl.py”的行,在其中          导入apt文件“ /usr/lib/python3/dist-packages/apt/init.py”,在第23行中       导入apt_pkg

     

ModuleNotFoundError:没有名为“ apt_pkg”的模块

     

最初的例外是:追溯(最近一次呼叫过去):

     

文件“ z_make_spectrogram.py”,第95行,在       plotstft(f)文件“ z_make_spectrogram.py”,位于plotstft中的第54行       s = stft(samples,binsize)文件“ z_make_spectrogram.py”,第13行,在stft中       样本= np.append(np.zeros(np.floor(frameSize / 2.0)),sig)

     

TypeError:“ numpy.float64”对象无法解释为整数

使用此语法修复第13行时,也发生了相同的错误。

samples = np.append(np.zeros(np.floor(int(frameSize/2.0))), sig)

作为参考,我目前正在使用tensorflow 1.4。

因此,我不确定是否可以将numpy版本更改为1.11。

有没有办法纠正此错误?

  • 编辑

我固定了第13行。

samples = np.append(np.zeros(frameSize//2), sig)

然后,我得到了这个result

同样的错误仍然发生,我不知道为什么。

1 个答案:

答案 0 :(得分:0)

您的错误均源于numpy.floornumpy.ceil的使用。尽管没有正确记录,但这些函数会返回浮点数(即使输入是整数数组也是如此)。
在需要整数输入的参数中使用结果值时,必须首先将它们转换为整数(只需通过强制转换即可)。

对于第一个错误,您可以改用整数除法(同样在注释中建议):

samples = np.append(np.zeros(frameSize//2), sig)

对于依赖于cols的{​​{1}}参数,没有简单的快捷方式,您应该简单地使用

numpy.ceil

相反。