我想将.wav文件转换为频谱图。
所以我用了这个Python文件。
import glob
import numpy as np
from matplotlib import pyplot as plt
import scipy.io.wavfile as wav
from numpy.lib import stride_tricks
""" short time fourier transform of audio signal """
def stft(sig, frameSize, overlapFac=0.5, window=np.hanning):
win = window(frameSize)
hopSize = int(frameSize - np.floor(overlapFac * frameSize))
# zeros at beginning (thus center of 1st window should be for sample nr. 0)
samples = np.append(np.zeros(np.floor(frameSize/2.0)), sig)
# cols for windowing
cols = np.ceil( (len(samples) - frameSize) / float(hopSize)) + 1
# zeros at end (thus samples can be fully covered by frames)
samples = np.append(samples, np.zeros(frameSize))
frames = stride_tricks.as_strided(samples, shape=(cols, frameSize), strides=(samples.strides[0]*hopSize, samples.strides[0])).copy()
frames *= win
return np.fft.rfft(frames)
""" scale frequency axis logarithmically """
def logscale_spec(spec, sr=44100, factor=20.):
timebins, freqbins = np.shape(spec)
scale = np.linspace(0, 1, freqbins) ** factor
scale *= (freqbins-1)/max(scale)
scale = np.unique(np.round(scale))
# create spectrogram with new freq bins
newspec = np.complex128(np.zeros([timebins, len(scale)]))
for i in range(0, len(scale)):
if i == len(scale)-1:
newspec[:,i] = np.sum(spec[:,scale[i]:], axis=1)
else:
newspec[:,i] = np.sum(spec[:,scale[i]:scale[i+1]], axis=1)
# list center freq of bins
allfreqs = np.abs(np.fft.fftfreq(freqbins*2, 1./sr)[:freqbins+1])
freqs = []
for i in range(0, len(scale)):
if i == len(scale)-1:
freqs += [np.mean(allfreqs[scale[i]:])]
else:
freqs += [np.mean(allfreqs[scale[i]:scale[i+1]])]
return newspec, freqs
""" plot spectrogram"""
def plotstft(audiopath, binsize=2**10, plotpath=None, colormap="jet"):
samplerate, samples = wav.read(audiopath)
s = stft(samples, binsize)
sshow, freq = logscale_spec(s, factor=1.0, sr=samplerate)
ims = 20.*np.log10(np.abs(sshow)/10e-6) # amplitude to decibel
timebins, freqbins = np.shape(ims)
plt.figure(figsize=(15, 7.5))
plt.imshow(np.transpose(ims), origin="lower", aspect="auto", cmap=colormap, interpolation="none")
plt.colorbar()
plt.xlabel("time (s)")
plt.ylabel("frequency (hz)")
plt.xlim([0, timebins-1])
plt.ylim([0, freqbins])
xlocs = np.float32(np.linspace(0, timebins-1, 5))
plt.xticks(xlocs, ["%.02f" % l for l in ((xlocs*len(samples)/timebins)+(0.5*binsize))/samplerate])
ylocs = np.int16(np.round(np.linspace(0, freqbins-1, 10)))
plt.yticks(ylocs, ["%.02f" % freq[i] for i in ylocs])
if plotpath:
plt.savefig(plotpath, bbox_inches="tight")
else:
plt.show()
plt.clf()
if __name__ == '__main__':
path='../tf_files/data_audio/'
folders=glob.glob(path+'*')
for folder in folders:
waves = glob.glob(folder+'/' + '*.wav')
print (waves)
if len(waves) == 0:
continue
for f in waves:
#try:
print ("Generating spectrograms..")
plotstft(f)
#except Exception as e:
#print ("Something went wrong while generating spectrogram:")
但是,结果与我的预期不同。
['../ tf_files / data_audio / test_wav_files / 22601-8-0-0_2(volume).wav', '../tf_files/data_audio/test_wav_files/22601-8-0-6_2(volume).wav', '../tf_files/data_audio/test_wav_files/518-4-0-0(volume).wav', '../tf_files/data_audio/test_wav_files/drill1.wav', '../tf_files/data_audio/test_wav_files/chunk0.wav', '../tf_files/data_audio/test_wav_files/siren2.wav', '../tf_files/data_audio/test_wav_files/bark2.wav', '../tf_files/data_audio/test_wav_files/bark3.wav', '../tf_files/data_audio/test_wav_files/14111-4-0-0_2(volume).wav', '../tf_files/data_audio/test_wav_files/drill2.wav', '../tf_files/data_audio/test_wav_files/22601-8-0-3_2(volume).wav', '../tf_files/data_audio/test_wav_files/siren1.wav', '../tf_files/data_audio/test_wav_files/siren3.wav', '../tf_files/data_audio/test_wav_files/518-4-0-3(volume).wav', '../tf_files/data_audio/test_wav_files/drill3.wav', '../tf_files/data_audio/test_wav_files/4910-3-0-0_2(volume).wav', '../tf_files/data_audio/test_wav_files/344-3-5-0(volume).wav', '../tf_files/data_audio/test_wav_files/bark1.wav', '../ tf_files / data_audio / test_wav_files / 344-3-1-0(volume).wav']
生成频谱图。
回溯(最近通话最近一次):
文件“ z_make_spectrogram.py”,第95行,在 plotstft(f)文件“ z_make_spectrogram.py”,位于plotstft中的第54行 s = stft(samples,binsize)文件“ z_make_spectrogram.py”,第13行,在stft中 样本= np.append(np.zeros(np.floor(frameSize / 2.0)),sig)
TypeError:“ numpy.float64”对象无法解释为整数 sys.excepthook错误:
回溯(最近通话最近):文件 “ /usr/lib/python3/dist-packages/apport_python_hook.py”,第63行,在 apport_excepthook 从apport.fileutils导入可能性文件打包的get_recent_crashes文件“ /usr/lib/python3/dist-packages/apport/init.py”,第5行,在 从apport.report导入报告文件“ /usr/lib/python3/dist-packages/apport/report.py”,第30行,在 import apport.fileutils文件“ /usr/lib/python3/dist-packages/apport/fileutils.py”,第23行,在 从apport.packaging_impl导入作为包装文件“ /usr/lib/python3/dist-packages/apport/packaging_impl.py”的行,在其中 导入apt文件“ /usr/lib/python3/dist-packages/apt/init.py”,在第23行中 导入apt_pkg
ModuleNotFoundError:没有名为“ apt_pkg”的模块
最初的例外是:追溯(最近一次呼叫过去):
文件“ z_make_spectrogram.py”,第95行,在 plotstft(f)文件“ z_make_spectrogram.py”,位于plotstft中的第54行 s = stft(samples,binsize)文件“ z_make_spectrogram.py”,第13行,在stft中 样本= np.append(np.zeros(np.floor(frameSize / 2.0)),sig)
TypeError:“ numpy.float64”对象无法解释为整数
使用此语法修复第13行时,也发生了相同的错误。
samples = np.append(np.zeros(np.floor(int(frameSize/2.0))), sig)
作为参考,我目前正在使用tensorflow 1.4。
因此,我不确定是否可以将numpy版本更改为1.11。
有没有办法纠正此错误?
。
。
我固定了第13行。
samples = np.append(np.zeros(frameSize//2), sig)
然后,我得到了这个result。
同样的错误仍然发生,我不知道为什么。
答案 0 :(得分:0)
您的错误均源于numpy.floor
或numpy.ceil
的使用。尽管没有正确记录,但这些函数会返回浮点数(即使输入是整数数组也是如此)。
在需要整数输入的参数中使用结果值时,必须首先将它们转换为整数(只需通过强制转换即可)。
对于第一个错误,您可以改用整数除法(同样在注释中建议):
samples = np.append(np.zeros(frameSize//2), sig)
对于依赖于cols
的{{1}}参数,没有简单的快捷方式,您应该简单地使用
numpy.ceil
相反。