我正在关注本教程 https://www.pyimagesearch.com/2018/07/30/opencv-object-tracking/ 然后通过将视频与S暂停,然后在要跟踪的对象上创建一个窗口来选择ROI
我需要帮助的是::
我想选择对象而不暂停视频或选择窗口,我的意思是选择窗口是静态的,我只需要单击鼠标左键即可进行跟踪
每次我右键单击另一个对象时,它都会删除前一个对象并跟踪新对象
通过鼠标滚轮控制选择窗口的大小| 这是我现在正在使用的代码
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import argparse
import imutils
import time
import cv2
import serial
arduino=serial.Serial('com51', 115200)
# Serial write section
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", type=str,
help="path to input video file")
ap.add_argument("-t", "--tracker", type=str, default="kcf",
help="OpenCV object tracker type")
args = vars(ap.parse_args())
# extract the OpenCV version info
(major, minor) = cv2.__version__.split(".")[:2]
# if we are using OpenCV 3.2 OR BEFORE, we can use a special factory
# function to create our object tracker
if int(major) == 3 and int(minor) < 3:
tracker = cv2.Tracker_create(args["tracker"].upper())
# otherwise, for OpenCV 3.3 OR NEWER, we need to explicity call the
# approrpiate object tracker constructor:
else:
# initialize a dictionary that maps strings to their corresponding
# OpenCV object tracker implementations
OPENCV_OBJECT_TRACKERS = {
"csrt": cv2.TrackerCSRT_create,
"kcf": cv2.TrackerKCF_create,
"boosting": cv2.TrackerBoosting_create,
"mil": cv2.TrackerMIL_create,
"tld": cv2.TrackerTLD_create,
"medianflow": cv2.TrackerMedianFlow_create,
"mosse": cv2.TrackerMOSSE_create
}
# grab the appropriate object tracker using our dictionary of
# OpenCV object tracker objects
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
# initialize the bounding box coordinates of the object we are going
# to track
initBB = None
# if a video path was not supplied, grab the reference to the web cam
if not args.get("video", False):
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(1.0)
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
#if vs.isOpened():
# get vs property
#width2 = vs.get(3)
#height2 = vs.get(4)
# initialize the FPS throughput estimator
fps = None
# loop over frames from the video stream
while True:
# grab the current frame, then handle if we are using a
# VideoStream or VideoCapture object
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
# check to see if we have reached the end of the stream
if frame is None:
break
# resize the frame (so we can process it faster) and grab the
# frame dimensions
#frame = imutils.resize(frame, width=1280)
(H, W) = frame.shape[:2]
# check to see if we are currently tracking an object
if initBB is not None:
# grab the new bounding box coordinates of the object
(success, box) = tracker.update(frame)
# check to see if the tracking was a success
if success:
(x, y, w, h) = [int(v) for v in box]
cv2.rectangle(frame, (x, y), (x + w, y + h),
(0, 255, 0), 2)
# update the FPS counter
fps.update()
fps.stop()
#fixing the x,y tracker box center
x2=int(x+w/2)
y2=int(y+h/2)
#the offsets for the x,y tracking from the center
sox = str(x2 - (W/2))
soy = str((H/2) - y2)
#sending the offsets to arduino
arduino.write('x'.encode())
arduino.write(sox.encode())
#print ("offset X value sent: ")
#print (sox)
#time.sleep(0.01)
arduino.write('y'.encode())
arduino.write(soy.encode())
#print ("offset Y value sent : ")
#print (soy)
#time.sleep(0.01)
cv2.line(frame, (int(W/2), int(H/2)), (x2, y2), (0, 255, 0), 1)
cv2.line(frame, (int(W), int(H/2)), (0, int(H/2)), (0, 0, 0), 2)
cv2.line(frame, (int(W/2), int(H)), (int(W/2), 0), (0, 0, 0), 2)
#cv2.line(frame, (320, 240), (x2, y2), (0, 255, 0), 1)
# initialize the set of information we'll be displaying on
# the frame
info = [
#("Tracker", args["tracker"]),
#("X = ",str(x)),
#("Y = ",str(y)),
("offset X = ",sox),
("offset y = ",soy),
#("width = ",W),
#("height = ",H),
("FPS", "{:.2f}".format(fps.fps())),
]
# loop over the info tuples and draw them on our frame
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, H - ((i * 20) + 20)),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the 's' key is selected, we are going to "select" a bounding
# box to track
if key == ord("s"):
# select the bounding box of the object we want to track (make
# sure you press ENTER or SPACE after selecting the ROI)
initBB = cv2.selectROI("Frame", frame, fromCenter=False,
showCrosshair=True)
# start OpenCV object tracker using the supplied bounding box
# coordinates, then start the FPS throughput estimator as well
tracker.init(frame, initBB)
fps = FPS().start()
# if the `q` key was pressed, break from the loop
elif key == ord("q"):
break
# if we are using a webcam, release the pointer
if not args.get("video", False):
vs.stop()
# otherwise, release the file pointer
else:
vs.release()
# close all windows
cv2.destroyAllWindows()
答案 0 :(得分:0)
您将需要对代码进行一些更改。首先,在代码顶部添加此回调函数,以告知openCV单击该怎么办。
mouse_click = False
tracker_location = (0,0)
def click_track(event, x, y, flags, param):
global mouse_click, tracker_location
# if the left mouse button was clicked, change flag
# Click is sensed as a button up
if event == cv2.EVENT_LBUTTONUP:
mouse_click = True
tracker_location = (x,y)
然后在启动while循环之前,先添加它以启动具有鼠标单击功能的显示窗口。
# Create a window for click detection
cv2.namedWindow("Frame")
cv2.setMouseCallback("Frame", click_track)
最后,在曾经选择ROI的位置,将其替换为仅在鼠标单击标记为true时起作用的静态ROI。
if mouse_click == True:
# select the bounding box of the object we want to track (make
# sure you press ENTER or SPACE after selecting the ROI)
h , w, ch = frame.shape
# initial ROI size
ROI_size_x = 0.1 * w
ROI_size_y = 0.1 * h
# Adjust the size when object is near image border
if( tracker_location[0] + ROI_size_x >= w):
ROI_size_x = w - tracker_location[0]
if( tracker_location[1] + ROI_size_y >= h):
ROI_size_y = h - tracker_location[1]
if( tracker_location[0] - ROI_size_x < 0):
tracker_location[0] = 0
if( tracker_location[1] - ROI_size_y < 0):
tracker_location[1] = 0
initBB = ( tracker_location[0] - ROI_size_x, tracker_location[1] - ROI_size_y, ROI_size_x * 2,ROI_size_y * 2)
您可以根据需要更改静态ROI的大小。目前将其设置为中心图像尺寸的20%。
这是完整的代码
# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import argparse
import imutils
import time
import cv2
import serial
mouse_click = False
tracker_location = (0,0)
def click_track(event, x, y, flags, param):
global mouse_click, tracker_location
tracker_location = (x,y)
# if the left mouse button was clicked, change flag
# Click is sensed as a button up
if event == cv2.EVENT_LBUTTONUP:
mouse_click = True
arduino=serial.Serial('com51', 115200)
# Serial write section
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-v", "--video", type=str,
help="path to input video file")
ap.add_argument("-t", "--tracker", type=str, default="kcf",
help="OpenCV object tracker type")
args = vars(ap.parse_args())
# extract the OpenCV version info
(major, minor) = cv2.__version__.split(".")[:2]
# if we are using OpenCV 3.2 OR BEFORE, we can use a special factory
# function to create our object tracker
if int(major) == 3 and int(minor) < 3:
tracker = cv2.Tracker_create(args["tracker"].upper())
# otherwise, for OpenCV 3.3 OR NEWER, we need to explicity call the
# approrpiate object tracker constructor:
else:
# initialize a dictionary that maps strings to their corresponding
# OpenCV object tracker implementations
OPENCV_OBJECT_TRACKERS = {
"csrt": cv2.TrackerCSRT_create,
"kcf": cv2.TrackerKCF_create,
"boosting": cv2.TrackerBoosting_create,
"mil": cv2.TrackerMIL_create,
"tld": cv2.TrackerTLD_create,
"medianflow": cv2.TrackerMedianFlow_create,
"mosse": cv2.TrackerMOSSE_create
}
# grab the appropriate object tracker using our dictionary of
# OpenCV object tracker objects
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
# Create a window for click detection
cv2.namedWindow("Frame")
cv2.setMouseCallback("Frame", click_track)
# initialize the bounding box coordinates of the object we are going
# to track
initBB = None
# if a video path was not supplied, grab the reference to the web cam
if not args.get("video", False):
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(1.0)
# otherwise, grab a reference to the video file
else:
vs = cv2.VideoCapture(args["video"])
#if vs.isOpened():
# get vs property
#width2 = vs.get(3)
#height2 = vs.get(4)
# initialize the FPS throughput estimator
fps = None
# loop over frames from the video stream
while True:
# grab the current frame, then handle if we are using a
# VideoStream or VideoCapture object
frame = vs.read()
frame = frame[1] if args.get("video", False) else frame
# check to see if we have reached the end of the stream
if frame is None:
break
# resize the frame (so we can process it faster) and grab the
# frame dimensions
#frame = imutils.resize(frame, width=1280)
(H, W) = frame.shape[:2]
# check to see if we are currently tracking an object
if initBB is not None:
# grab the new bounding box coordinates of the object
(success, box) = tracker.update(frame)
# check to see if the tracking was a success
if success:
(x, y, w, h) = [int(v) for v in box]
cv2.rectangle(frame, (x, y), (x + w, y + h),
(0, 255, 0), 2)
# update the FPS counter
fps.update()
fps.stop()
#fixing the x,y tracker box center
x2=int(x+w/2)
y2=int(y+h/2)
#the offsets for the x,y tracking from the center
sox = str(x2 - (W/2))
soy = str((H/2) - y2)
#sending the offsets to arduino
arduino.write('x'.encode())
arduino.write(sox.encode())
#print ("offset X value sent: ")
#print (sox)
#time.sleep(0.01)
arduino.write('y'.encode())
arduino.write(soy.encode())
#print ("offset Y value sent : ")
#print (soy)
#time.sleep(0.01)
cv2.line(frame, (int(W/2), int(H/2)), (x2, y2), (0, 255, 0), 1)
cv2.line(frame, (int(W), int(H/2)), (0, int(H/2)), (0, 0, 0), 2)
cv2.line(frame, (int(W/2), int(H)), (int(W/2), 0), (0, 0, 0), 2)
#cv2.line(frame, (320, 240), (x2, y2), (0, 255, 0), 1)
# initialize the set of information we'll be displaying on
# the frame
info = [
#("Tracker", args["tracker"]),
#("X = ",str(x)),
#("Y = ",str(y)),
("offset X = ",sox),
("offset y = ",soy),
#("width = ",W),
#("height = ",H),
("FPS", "{:.2f}".format(fps.fps())),
]
# loop over the info tuples and draw them on our frame
for (i, (k, v)) in enumerate(info):
text = "{}: {}".format(k, v)
cv2.putText(frame, text, (10, H - ((i * 20) + 20)),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# select the bounding box of the object we want to track (make
# sure you press ENTER or SPACE after selecting the ROI)
h , w, ch = frame.shape
# initial ROI size
ROI_size_x = 0.1 * w
ROI_size_y = 0.1 * h
# Adjust the size when object is near image border
if( tracker_location[0] + ROI_size_x >= w):
ROI_size_x = w - tracker_location[0]
if( tracker_location[1] + ROI_size_y >= h):
ROI_size_y = h - tracker_location[1]
if( tracker_location[0] - ROI_size_x < 0):
tracker_location[0] = 0
if( tracker_location[1] - ROI_size_y < 0):
tracker_location[1] = 0
initBB = ( tracker_location[0] - ROI_size_x, tracker_location[1] - ROI_size_y, ROI_size_x * 2,ROI_size_y * 2)
#initBB = cv2.selectROI("Frame", frame, fromCenter=False,
# showCrosshair=True)
if mouse_click == True:
# start OpenCV object tracker using the supplied bounding box
# coordinates, then start the FPS throughput estimator as well
tracker = OPENCV_OBJECT_TRACKERS[args["tracker"]]()
tracker.init(frame, initBB)
fps = FPS().start()
mouse_click = False
#drawing the initial box
cv2.rectangle(frame,int(initBB[0],initBB[1]),int(initBB[2],initBB[3]),(0,255,255),2)
# show the output frame
cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# if we are using a webcam, release the pointer
if not args.get("video", False):
vs.stop()
# otherwise, release the file pointer
else:
vs.release()
# close all windows
cv2.destroyAllWindows()