我有一些由几个表组成的数据模型,我需要过滤它们。
它是两个功能funcFast
和funcList
。 funcFast
可以返回快速结果,因为表是否需要用funcList
进行过滤。 funcList
返回允许的ID列表。我将函数标记为STABLE,但是它们的运行速度不如我期望的那样:)
我创建了几个示例函数:
CREATE OR REPLACE FUNCTION funcFastPlPgSql(res boolean)
returns boolean as $$
begin return res; end
$$ language plpgsql stable;
CREATE OR REPLACE FUNCTION funcList(cnt int)
returns setof integer as $$
select generate_series(1, cnt)
$$ language sql stable;
测试。
情况1。仅按快速功能过滤即可工作:
explain analyze
with obs as (select generate_series(1, 1000000) as id)
select count(*) from obs
where funcFastPlPgSql(true)
查询计划是
Aggregate (cost=27.76..27.77 rows=1 width=8) (actual time=573.258..573.259 rows=1 loops=1)
CTE obs
-> Result (cost=0.00..5.01 rows=1000 width=4) (actual time=0.006..114.327 rows=1000000 loops=1)
-> Result (cost=0.25..20.25 rows=1000 width=0) (actual time=0.038..489.942 rows=1000000 loops=1)
One-Time Filter: funcfastplpgsql(true)
-> CTE Scan on obs (cost=0.25..20.25 rows=1000 width=0) (actual time=0.012..392.504 rows=1000000 loops=1)
Planning time: 0.184 ms
Execution time: 576.177 ms
情况2。仅按慢速功能过滤也可以:
explain analyze
with obs as (select generate_series(1, 1000000) as id)
select count(*) from obs
where id in (select funcList(1000))
查询计划是
Aggregate (cost=62.26..62.27 rows=1 width=8) (actual time=469.344..469.344 rows=1 loops=1)
CTE obs
-> Result (cost=0.00..5.01 rows=1000 width=4) (actual time=0.006..106.144 rows=1000000 loops=1)
-> Hash Join (cost=22.25..56.00 rows=500 width=0) (actual time=1.566..469.202 rows=1000 loops=1)
Hash Cond: (obs.id = (funclist(1000)))
-> CTE Scan on obs (cost=0.00..20.00 rows=1000 width=4) (actual time=0.009..359.580 rows=1000000 loops=1)
-> Hash (cost=19.75..19.75 rows=200 width=4) (actual time=1.548..1.548 rows=1000 loops=1)
Buckets: 1024 Batches: 1 Memory Usage: 44kB
-> HashAggregate (cost=17.75..19.75 rows=200 width=4) (actual time=1.101..1.312 rows=1000 loops=1)
Group Key: funclist(1000)
-> Result (cost=0.00..5.25 rows=1000 width=4) (actual time=0.058..0.706 rows=1000 loops=1)
Planning time: 0.141 ms
Execution time: 472.183 ms
案例3,但是然后将两个函数组合在一起,我希望最好的情况应该接近[情况1],最坏的情况应该接近[情况2],但是:
explain analyze
with obs as (select generate_series(1, 1000000) as id)
select count(*) from obs
where funcFastPlPgSql(true) or id in (select funcList(1000))
查询计划是
Aggregate (cost=286.93..286.94 rows=1 width=8) (actual time=1575.775..1575.775 rows=1 loops=1)
CTE obs
-> Result (cost=0.00..5.01 rows=1000 width=4) (actual time=0.008..131.372 rows=1000000 loops=1)
-> CTE Scan on obs (cost=7.75..280.25 rows=667 width=0) (actual time=0.035..1468.007 rows=1000000 loops=1)
Filter: (funcfastplpgsql(true) OR (hashed SubPlan 2))
SubPlan 2
-> Result (cost=0.00..5.25 rows=1000 width=4) (never executed)
Planning time: 0.100 ms
Execution time: 1578.624 ms
我在这里想念的是什么?为什么两个函数一起运行的查询的运行时间更长并且如何解决?