使用Keras嵌入层对输入数据进行一种热编码时,我遇到了困难。
以下是玩具代码。
导入软件包
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.embeddings import Embedding
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import numpy as np
import openpyxl
import pandas as pd
from keras.callbacks import ModelCheckpoint
from keras.callbacks import ReduceLROnPlateau
输入数据如下所示。
培训和测试数据
X_train_orignal= np.array(['OC(=O)C1=C(Cl)C=CC=C1Cl', 'OC(=O)C1=C(Cl)C=C(Cl)C=C1Cl',
'OC(=O)C1=CC=CC(=C1Cl)Cl', 'OC(=O)C1=CC(=CC=C1Cl)Cl',
'OC1=C(C=C(C=C1)[N+]([O-])=O)[N+]([O-])=O'])
X_test_orignal=np.array(['OC(=O)C1=CC=C(Cl)C=C1Cl', 'CCOC(N)=O',
'OC1=C(Cl)C(=C(Cl)C=C1Cl)Cl'])
Y_train=np.array(([[2.33],
[2.59],
[2.59],
[2.54],
[4.06]]))
Y_test=np.array([[2.20],
[2.81],
[2.00]])
创建字典
现在,我创建两个字典,这些字符用来索引副。唯一字符号存储在len(charset)
中,字符串的最大长度以及5个其他字符存储在embed
中。每个字符串的开头都将填充!
,结尾将是E
。
charset = set("".join(list(X_train_orignal))+"!E")
char_to_int = dict((c,i) for i,c in enumerate(charset))
int_to_char = dict((i,c) for i,c in enumerate(charset))
embed = max([len(smile) for smile in X_train_orignal]) + 5
print (str(charset))
print(len(charset), embed)
一种热编码
我将所有火车数据转换为一种热编码,如下所示。
def vectorize(smiles):
one_hot = np.zeros((smiles.shape[0], embed , len(charset)),dtype=np.int8)
for i,smile in enumerate(smiles):
#encode the startchar
one_hot[i,0,char_to_int["!"]] = 1
#encode the rest of the chars
for j,c in enumerate(smile):
one_hot[i,j+1,char_to_int[c]] = 1
#Encode endchar
one_hot[i,len(smile)+1:,char_to_int["E"]] = 1
return one_hot[:,0:-1,:]
X_train = vectorize(X_train_orignal)
print(X_train.shape)
X_test = vectorize(X_test_orignal)
print(X_test.shape)
当将输入的火车数据转换为一种热编码时,一种热编码数据的形状对于火车来说变成(5, 44, 14)
,对于测试来说变成(3, 44, 14)
。对于火车,有5个示例,最大长度为0-44,唯一字符为14。字符数较少的示例将用E
填充到最大长度。
验证正确的填充 以下是验证我们是否正确完成填充的代码。
mol_str_train=[]
mol_str_test=[]
for x in range(5):
mol_str_train.append("".join([int_to_char[idx] for idx in np.argmax(X_train[x,:,:], axis=1)]))
for x in range(3):
mol_str_test.append("".join([int_to_char[idx] for idx in np.argmax(X_test[x,:,:], axis=1)]))
让我们看看火车的样子。
mol_str_train
['!OC(=O)C1=C(Cl)C=CC=C1ClEEEEEEEEEEEEEEEEEEEE',
'!OC(=O)C1=C(Cl)C=C(Cl)C=C1ClEEEEEEEEEEEEEEEE',
'!OC(=O)C1=CC=CC(=C1Cl)ClEEEEEEEEEEEEEEEEEEEE',
'!OC(=O)C1=CC(=CC=C1Cl)ClEEEEEEEEEEEEEEEEEEEE',
'!OC1=C(C=C(C=C1)[N+]([O-])=O)[N+]([O-])=OEEE']
现在是构建模型的时候了。
模型
model = Sequential()
model.add(Embedding(len(charset), 10, input_length=embed))
model.add(Flatten())
model.add(Dense(1, activation='linear'))
def coeff_determination(y_true, y_pred):
from keras import backend as K
SS_res = K.sum(K.square( y_true-y_pred ))
SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) )
return ( 1 - SS_res/(SS_tot + K.epsilon()) )
def get_lr_metric(optimizer):
def lr(y_true, y_pred):
return optimizer.lr
return lr
optimizer = Adam(lr=0.00025)
lr_metric = get_lr_metric(optimizer)
model.compile(loss="mse", optimizer=optimizer, metrics=[coeff_determination, lr_metric])
callbacks_list = [
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=1e-15, verbose=1, mode='auto',cooldown=0),
ModelCheckpoint(filepath="weights.best.hdf5", monitor='val_loss', save_best_only=True, verbose=1, mode='auto')]
history =model.fit(x=X_train, y=Y_train,
batch_size=1,
epochs=10,
validation_data=(X_test,Y_test),
callbacks=callbacks_list)
错误
ValueError: Error when checking input: expected embedding_3_input to have 2 dimensions, but got array with shape (5, 44, 14)
嵌入层需要二维数组。我该如何处理这个问题,以便它可以接受一个热矢量编码数据。
以上所有代码均可运行。
答案 0 :(得分:1)
Keras嵌入层可用于索引,而不能直接用于一键编码。 因此,您不需要(5,44,14),只需(5,44)即可。
例如获取带有argmax的索引:
X_test = np.argmax(X_test, axis=2)
X_train = np.argmax(X_train, axis=2)
虽然最好不要先对其进行一次热编码=)
除此之外,您的“嵌入”变量的大小为45,而数据的大小为44。
如果您进行更改,则您的模型运行良好:
model = Sequential()
model.add(Embedding(len(charset), 10, input_length=44))
model.add(Flatten())
model.add(Dense(1, activation='linear'))
def coeff_determination(y_true, y_pred):
from keras import backend as K
SS_res = K.sum(K.square( y_true-y_pred ))
SS_tot = K.sum(K.square( y_true - K.mean(y_true) ) )
return ( 1 - SS_res/(SS_tot + K.epsilon()) )
def get_lr_metric(optimizer):
def lr(y_true, y_pred):
return optimizer.lr
return lr
optimizer = Adam(lr=0.00025)
lr_metric = get_lr_metric(optimizer)
model.compile(loss="mse", optimizer=optimizer, metrics=[coeff_determination, lr_metric])
callbacks_list = [
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=1e-15, verbose=1, mode='auto',cooldown=0),
ModelCheckpoint(filepath="weights.best.hdf5", monitor='val_loss', save_best_only=True, verbose=1, mode='auto')]
history =model.fit(x=np.argmax(X_train, axis=2), y=Y_train,
batch_size=1,
epochs=10,
validation_data=(np.argmax(X_test, axis=2),Y_test),
callbacks=callbacks_list)
答案 1 :(得分:1)
我们的输入形状未在嵌入层中正确定义。以下代码通过减少将数据维转换为2D的步骤为我工作,您可以将3D输入直接传递到嵌入层。
#THE MISSING STUFF
#_________________________________________
Y_train = Y_train.reshape(5) #Dense layer contains a single unit so need to input single dimension array
max_len = len(charset)
max_features = embed-1
inputshape = (max_features, max_len) #input shape didn't define. Embedding layer can accept 3D input by using input_shape
#__________________________________________
model = Sequential()
#model.add(Embedding(len(charset), 10, input_length=14))
model.add(Embedding(max_features, 10, input_shape=inputshape))#input_length=max_len))
model.add(Flatten())
model.add(Dense(1, activation='linear'))
print(model.summary())
optimizer = Adam(lr=0.00025)
lr_metric = get_lr_metric(optimizer)
model.compile(loss="mse", optimizer=optimizer, metrics=[coeff_determination, lr_metric])
callbacks_list = [
ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=1e-15, verbose=1, mode='auto',cooldown=0),
ModelCheckpoint(filepath="weights.best.hdf5", monitor='val_loss', save_best_only=True, verbose=1, mode='auto')]
history =model.fit(x=X_train, y=Y_train,
batch_size=10,
epochs=10,
validation_data=(X_test,Y_test),
callbacks=callbacks_list)