我有以下具有命名列和索引的DataFrame:
'a' 'a*' 'b' 'b*'
1 5 NaN 9 NaN
2 NaN 3 3 NaN
3 4 NaN 1 NaN
4 NaN 9 NaN 7
数据源导致某些列标题的复制略有不同。例如,如上所述,某些列标题是一个字符串,而某些则是带有附加'*'字符的相同字符串。
我想将a*
和b*
列中的所有值(不为null)分别复制到a
和b
。
有没有一种有效的方法来进行这样的操作?
答案 0 :(得分:4)
使用np.where
df['a']= np.where(df['a'].isnull(), df['a*'], df['a'])
df['b']= np.where(df['b'].isnull(), df['b*'], df['b'])
输出:
a a* b b*
0 5.0 NaN 9.0 NaN
1 3.0 3.0 3.0 NaN
2 4.0 NaN 1.0 NaN
3 9.0 9.0 7.0 7.0
答案 1 :(得分:3)
使用fillna()
的速度比np.where
慢得多,但是具有仅使用pandas
的优点。如果您想要一种更快的方法并保持pandas
的纯正性,可以使用combine_first()
,根据文档,该方法用于:
组合系列值,请首先选择调用系列的值。结果索引将是两个索引的并集
翻译:这是一种旨在完全解决问题要求的方法。
如何使用它?
df['a'].combine_first(df['a*'])
性能:
df = pd.DataFrame({'A': [0, None, 1, 2, 3, None] * 10000, 'A*': [4, 4, 5, 6, 7, 8] * 10000})
def using_fillna(df):
return df['A'].fillna(df['A*'])
def using_combine_first(df):
return df['A'].combine_first(df['A*'])
def using_np_where(df):
return np.where(df['A'].isnull(), df['A*'], df['A'])
def using_np_where_numpy(df):
return np.where(np.isnan(df['A'].values), df['A*'].values, df['A'].values)
%timeit -n 100 using_fillna(df)
%timeit -n 100 using_combine_first(df)
%timeit -n 100 using_np_where(df)
%timeit -n 100 using_np_where_numpy(df)
1.34 ms ± 71.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
281 µs ± 15.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
257 µs ± 16.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
166 µs ± 10.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
答案 2 :(得分:2)
要获得更好的性能,可以使用numpy.isnan
并通过values
将Series转换为numpy数组:
df['a'] = np.where(np.isnan(df['a'].values), df['a*'].values, df['a'].values)
df['b'] = np.where(np.isnan(df['b'].values), df['b*'].values, df['a'].values)
另一个通用解决方案,如果在DataFrame的列中仅存在有/没有*
的配对,并且有必要删除*
列:
首先由split
创建MultiIndex
,并附加*val
:
df.columns = (df.columns + '*val').str.split('*', expand=True, n=1)
然后按DataFrame.xs
选择DataFrames,因此DataFrame.fillna
的工作非常好:
df = df.xs('*val', axis=1, level=1).fillna(df.xs('val', axis=1, level=1))
print (df)
a b
1 5.0 9.0
2 3.0 3.0
3 4.0 1.0
4 9.0 7.0
性能 :(取决于缺失值的数量和DataFrame的长度)
df = pd.DataFrame({'A': [0, np.nan, 1, 2, 3, np.nan] * 10000,
'A*': [4, 4, 5, 6, 7, 8] * 10000})
def using_fillna(df):
df['A'] = df['A'].fillna(df['A*'])
return df
def using_np_where(df):
df['B'] = np.where(df['A'].isnull(), df['A*'], df['A'])
return df
def using_np_where_numpy(df):
df['C'] = np.where(np.isnan(df['A'].values), df['A*'].values, df['A'].values)
return df
def using_combine_first(df):
df['D'] = df['A'].combine_first(df['A*'])
return df
%timeit -n 100 using_fillna(df)
%timeit -n 100 using_np_where(df)
%timeit -n 100 using_combine_first(df)
%timeit -n 100 using_np_where_numpy(df)
1.15 ms ± 89.6 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
533 µs ± 13.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
591 µs ± 38.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
423 µs ± 21.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)