我正在研究一个更大的代码问题,并试图分解一些简单的部分,以便我能够理解它们。我现在正在尝试了解熊猫查询功能。我已为学习复制了一个小例子。
import pandas as pd
df = pd.DataFrame()
df['nameA'] = ['Donald','Daffy','Minnie']
df['nameB'] = ['Donald','Daffy','Minnie']
df2 = df.query('nameA < nameB')
print(df2)
我得到了一个空的数据框,尽管我已经在较大的代码库中看到了完全相似的内容。有人可以解释我的基本理解有哪些缺陷吗?
我想通过按两列分组并获取名称的所有组合来进行后续操作,但不要重复。
我正在尝试分析几周前的考试题。有两个数据帧,电影和演员。
任务如下:
创建一个名为good_teamwork的数据框,其中包含四列:
cast_member_1 and cast_member_2, the names of each pair of cast members that appear in the same movie;
num_movies, the number of movies that each pair of cast members appears in; and
avg_score, the average review score for each of those movies containing the two cast members.
按字母A到Z的顺序排列结果,并按字母A到Z的字母顺序排序打破联系。将avg_score的结果四舍五入到小数点后两位(2)。
删除重复项。
电影数据帧很大,但是有点如下:
id name score
0 9 Star Wars: Episode III - Revenge of the Sith 3D 61
1 24214 The Chronicles of Narnia: The Lion, The Witch ... 46
2 1789 War of the Worlds 94
3 10009 Star Wars: Episode II - Attack of the Clones 3D 28
4 771238285 Warm Bodies 3
强制转换数据帧遵循以下格式:
movie_id cast_id cast_name
0 9 162652153 Hayden Christensen
1 9 162652152 Ewan McGregor
2 9 418638213 Kenny Baker
3 9 548155708 Graeme Blundell
4 9 358317901 Jeremy Bulloch
解决方案代码如下:
joined_df = cast.merge(cast, how='inner', left_on='movie_id',
right_on='movie_id')
joined_df = joined_df.query('cast_name_x < cast_name_y')
good_teamwork2 = joined_df.merge(movies, how='inner',
left_on='movie_id', right_on='id')
good_teamwork2 = good_teamwork2.groupby(['cast_name_x',
'cast_name_y']).agg({'movie_id': 'size', 'score':
'mean'}).reset_index()
good_teamwork2.columns = ['cast_member_1', 'cast_member_2',
'avg_score', 'num_movies']
good_teamwork2 = good_teamwork2[good_teamwork2['avg_score'] >= 50]
good_teamwork2 = good_teamwork2[good_teamwork2['num_movies'] >= 3]
good_teamwork2 = good_teamwork2.round({'avg_score': 2})
good_teamwork2 = good_teamwork2.sort_values(by=['cast_member_1',
'cast_member_2'], ascending=[True, True]).reset_index(drop=True)
good_teamwork2 = good_teamwork2[['cast_member_1', 'cast_member_2',
'num_movies', 'avg_score']]
我主要是想了解查询语句以及具有cast_name_x和cast_name_y的groupby语句如何获取actor的所有组合而不重复。我也看不到,例如,cast_name_x在哪里被声明为要使用的变量。
答案 0 :(得分:1)
您可以compare strings columns with less operator,但显然没有理由。
print(df)
nameA nameB
0 Donald Donald
1 Daffy Daffy
2 Minnie Minnie
具有相同输出的替代解决方案是将boolean indexing
与布尔掩码一起使用-此处可能会看到比较仅返回False
值,因此输出为空DataFrame
:
mask = df['nameA'] < df['nameB']
print (mask)
0 False
1 False
2 False
dtype: bool
df2 = df[mask]
print (df2)
Empty DataFrame
Columns: [nameA, nameB]
Index: []
df2 = df.query('nameA < nameB')
print(df2)
Empty DataFrame
Columns: [nameA, nameB]
Index: []