如何在大矩阵中找到小矩阵的最佳“匹配”? 例如:
small=[[1,2,3],
[4,5,6],
[7,8,9]]
big=[[2,4,2,3,5],
[6,0,1,9,0],
[2,8,2,1,0],
[7,7,4,2,1]]
将匹配定义为矩阵中数字的差,因此位置(1,1)的匹配就好像小数字5等于大矩阵的数字0(因此坐标中小矩阵的中心数(1 ,1)大矩阵。
位置(1,1)的匹配值为: m(1,1)= | 2-1 | + | 4-2 | + | 2-3 | + | 6-4 | + | 0-5 | + | 1-6 | + | 2-7 | + | 8−8 | + | 2−9 | = 28
目标是找到这些矩阵中可能的最低差异。
小的矩阵总是具有奇数行和列,因此很容易找到它的中心。
答案 0 :(得分:1)
您可以遍历可行的行和列,并用big
压缩small
的切片以计算差异之和,并使用min
找到差异中的最小值:
from itertools import islice
min(
(
sum(
sum(abs(x - y) for x, y in zip(a, b))
for a, b in zip(
(
islice(r, col, col + len(small[0]))
for r in islice(big, row, row + len(small))
),
small
)
),
(row, col)
)
for row in range(len(big) - len(small) + 1)
for col in range(len(big[0]) - len(small[0]) + 1)
)
或一行:
min((sum(sum(abs(x - y) for x, y in zip(a, b)) for a, b in zip((islice(r, col, col + len(small[0])) for r in islice(big, row, row + len(small))), small)), (row, col)) for row in range(len(big) - len(small) + 1) for col in range(len(big[0]) - len(small[0]) + 1))
这将返回:(24, (1, 0))
答案 1 :(得分:0)
手工完成:
small=[[1,2,3],
[4,5,6],
[7,8,9]]
big=[[2,4,2,3,5],
[6,0,1,9,0],
[2,8,2,1,0],
[7,7,4,2,1]]
# collect all the sums
summs= []
# k and j are the offset into big
for k in range(len(big)-len(small)+1):
# add inner list for one row
summs.append([])
for j in range(len(big[0])-len(small[0])+1):
s = 0
for row in range(len(small)):
for col in range(len(small[0])):
s += abs(big[k+row][j+col]-small[row][col])
# add to the inner list
summs[-1].append(s)
print(summs)
输出:
[[28, 29, 38], [24, 31, 39]]
如果您只是对较大的坐标感兴趣,请将(rowoffset,coloffset,sum)
的元组存储在列表中,不要将列表框放入列表中。您可以通过以下方式将min()
与密钥一起使用:
summs = []
for k in range(len(big)-len(small)+1):
for j in range(len(big[0])-len(small[0])+1):
s = 0
for row in range(len(small)):
for col in range(len(small[0])):
s += abs(big[k+row][j+col]-small[row][col])
summs .append( (k,j,s) ) # row,col, sum
print ("Min value for bigger matrix at ", min(summs , key=lambda x:x[2]) )
输出:
Min value for bigger matrix at (1, 0, 24)
如果您具有“绘制”功能,则只会返回行数最少的列,即col偏移量。
答案 2 :(得分:0)
另一个可能的解决方案是,返回最小差和big
矩阵中的坐标:
small=[[1,2,3],
[4,5,6],
[7,8,9]]
big=[[2,4,2,3,5],
[6,0,1,9,0],
[2,8,2,1,0],
[7,7,4,2,1]]
def difference(small, matrix):
l = len(small)
return sum([abs(small[i][j] - matrix[i][j]) for i in range(l) for j in range(l)])
def getSubmatrices(big, smallLength):
submatrices = []
bigLength = len(big)
step = (bigLength // smallLength) + 1
for i in range(smallLength):
for j in range(step):
tempMatrix = [big[j+k][i:i+smallLength] for k in range(smallLength)]
submatrices.append([i+1,j+1,tempMatrix])
return submatrices
def minDiff(small, big):
submatrices = getSubmatrices(big, len(small))
diffs = [(x,y, difference(small, submatrix)) for x, y, submatrix in submatrices]
minDiff = min(diffs, key=lambda elem: elem[2])
return minDiff
y, x, diff = minDiff(small, big)
print("Minimum difference: ", diff)
print("X = ", x)
print("Y = ", y)
输出:
Minimum difference: 24
X = 1
Y = 2
答案 3 :(得分:0)
我会用numpy来解决这个问题。
首先,我将数组转换为numpy数组
import numpy as np
small = np.array([[1,2,3], [4,5,6], [7,8,9]])
big = np.array([[2,4,2,3,5], [6,0,1,9,0], [2,8,2,1,0], [7,7,4,2,1]])
然后我将初始化一个数组以存储测试的结果(可选:还有一个字典)
result_shape = np.array(big.shape) - np.array(small.shape) + 1
results = np.zeros((result_shape[0], result_shape[1]))
result_dict = {}
然后在可以将小矩阵放置在大矩阵上的位置上进行迭代,并计算差值:
insert = np.zeros(big.shape)
for i in range(results.shape[0]):
for j in range(results.shape):
insert[i:small.shape[0] + i, j:small.shape[1] + j] = small
results[i, j] = np.sum(np.abs(big - insert)[i:3+i, j:3+j])
# Optional dictionary
result_dict['{}{}'.format(i, j)] = np.sum(np.abs(big - insert)[i:3+i, j:3+j])
然后您可以print(results)
并获得:
[[ 28. 29. 38.]
[ 24. 31. 39.]]
和/或由于小矩阵在大矩阵上的位置存储在字典的键中,因此您可以通过按键操作获得小矩阵在大矩阵上的位置,其中差异最小: >
pos_min = [int(i) for i in list(min(result_dict, key=result_dict.get))]
,如果您print(pos_min)
,您将获得:
[1, 0]
然后,如果您需要索引来进行任何操作,则可以根据需要对其进行迭代。希望这会有所帮助!