我正在尝试将一个数据帧插入另一个数据帧。
scala> addressOrigRenamed.show
+--------------+----------------------+-----------+-----------+
|orig_contactid|orig_contactaddresskey|orig_valueA|orig_valueB|
+--------------+----------------------+-----------+-----------+
| 1| 1| 54| 3|
| 1| 2| 55| 7|
+--------------+----------------------+-----------+-----------+
scala> dfNew.show
+---------+-----------------+------+------+
|contactId|contactaddresskey|valueA|valueB|
+---------+-----------------+------+------+
| 1| 2| 10| 9|
+---------+-----------------+------+------+
scala> val endDF = addressOrigRenamed.join(dfNew, $"orig_contactid" === $"contactid" && $"orig_contactaddresskey" === "$contactaddresskey", "fullouter").select(coalesce($"contactid", $"orig_contactid").alias("contactid"), coalesce($"contactaddresskey", $"orig_contactaddresskey").alias("contactaddresskey"), coalesce($"valueA", $"orig_valueA").alias("valueA"), coalesce($"valueB", $"orig_valueB").alias("valueB"))
scala> endDF.show
+---------+-----------------+------+------+
|contactid|contactaddresskey|valueA|valueB|
+---------+-----------------+------+------+
| 1| 1| 54| 3|
| 1| 2| 10| 9|
+---------+-----------------+------+------+
如您所见,这可行。但是语法是可怕的。这只是一个测试,我需要合并15-20个色谱柱。写coalesce(....).alias(...)
15-20确实是一个糟糕的选择。我该怎么写呢?
答案 0 :(得分:1)
可以创建一系列合并函数:
scala> val joinedDF = addressOrigRenamed.join(dfNew, $"orig_contactid" === $"contactid" && $"orig_contactaddresskey" === "$contactaddresskey", "fullouter")
scala> val arr = dfNew.columns.map(x => {
val y = "orig_" + x
coalesce(joinedDF.col(x), joinedDF.col(y)).alias(x)
})
然后您可以选择使用此arr,并记住要传播arr的元素:
scala> joinedDF.select(arr:_*).show
+---------+-----------------+------+------+
|contactId|contactaddresskey|valueA|valueB|
+---------+-----------------+------+------+
| 1| 1| 54| 3|
| 1| 2| 10| 9|
+---------+-----------------+------+------+