未记录的链接器问题:“ ld返回253退出状态”

时间:2018-11-12 07:16:58

标签: c++ ld

什么

我收到一条错误消息,我找不到任何信息,有人知道我在哪里可以找到有关ld的253退出状态的任何信息吗?我什么都找不到。在google上只有一个提及,而且似乎毫无关联。

collect2.exe: error: ld returned 253 exit status

对于链接器和编译器,输出很详细,没有其他警告或错误甚至与上面的内容有关。

尝试查找问题

该错误在某种程度上与程序大小有关,但是该程序尚未达到系统闪存大小,因此我有些困惑。

如果运行大小,则结果如下(设备限制为64K):

text    data     bss     dec
45608     396    6200   52204   

当我将设备内存大小增加到128K时,什么都没有改变,同样的消息... 但是,如果我将代码大小减小到大约54 K以下,则程序会编译,而删除哪个代码都没关系。

如果我仅添加更多代码,则二进制文件的大小应仅增加几百个字节。但是,当我这样做时,链接器将失败,并显示上述错误。

当检查从objcopy创建的二进制文件时,内存中有一个巨大的空闲区域,内存肯定没有满。链接器文件已附加,但我看不到它们如何导致我的问题:

已删除链接,以便在问题中包含链接器文件。

更新

问题仍然存在,但是我注意到在生成的映射文件中,它似乎停止在模板对象的中间,好像链接程序只是抛出了一些异常而中止了一样。它停在的行是很沉重的模板代码,但是它实例化了崩溃的确切实例(或至少相似的对象,唯一的区别是捕获的lambda类型,按照标准它们始终是唯一类型)。

映射文件中的最后一项位于0x080008ce,并且由于Flash从地址0x08000000开始,因此实际上是0x08ce,距离Flash末尾不远。

sections.ld

/*
 * Default linker script for Cortex-M (it includes specifics for STM32F[34]xx).
 * 
 * To make use of the multi-region initialisations, define
 * OS_INCLUDE_STARTUP_INIT_MULTIPLE_RAM_SECTIONS for the _startup.c file.
 */

/*
 * The '__stack' definition is required by crt0, do not remove it.
 */
__stack = ORIGIN(RAM) + LENGTH(RAM);

_estack = __stack;  /* STM specific definition */

/*
 * Default stack sizes.
 * These are used by the startup in order to allocate stacks 
 * for the different modes.
 */

__Main_Stack_Size = 1024 ;

PROVIDE ( _Main_Stack_Size = __Main_Stack_Size ) ;

__Main_Stack_Limit = __stack  - __Main_Stack_Size ;

/* "PROVIDE" allows to easily override these values from an 
 * object file or the command line. */
PROVIDE ( _Main_Stack_Limit = __Main_Stack_Limit ) ;

/*
 * There will be a link error if there is not this amount of 
 * RAM free at the end. 
 */
_Minimum_Stack_Size = 256 ;

/*
 * Default heap definitions.
 * The heap start immediately after the last statically allocated 
 * .sbss/.noinit section, and extends up to the main stack limit.
 */
PROVIDE ( _Heap_Begin = _end_noinit ) ;
PROVIDE ( _Heap_Limit = __stack - __Main_Stack_Size ) ;

/* 
 * The entry point is informative, for debuggers and simulators,
 * since the Cortex-M vector points to it anyway.
 */
ENTRY(_start)


/* Sections Definitions */

SECTIONS
{
    /*
     * For Cortex-M devices, the beginning of the startup code is stored in
     * the .isr_vector section, which goes to FLASH. 
     */
    .isr_vector : ALIGN(4)
    {
        FILL(0xFF)

        __vectors_start = ABSOLUTE(.) ;
        __vectors_start__ = ABSOLUTE(.) ; /* STM specific definition */
        KEEP(*(.isr_vector))        /* Interrupt vectors */

        KEEP(*(.cfmconfig))         /* Freescale configuration words */   

        /* 
         * This section is here for convenience, to store the
         * startup code at the beginning of the flash area, hoping that
         * this will increase the readability of the listing.
         */
        *(.after_vectors .after_vectors.*)  /* Startup code and ISR */

    } >FLASH

    .inits : ALIGN(4)
    {
        /* 
         * Memory regions initialisation arrays.
         *
         * Thee are two kinds of arrays for each RAM region, one for 
         * data and one for bss. Each is iterrated at startup and the   
         * region initialisation is performed.
         * 
         * The data array includes:
         * - from (LOADADDR())
         * - region_begin (ADDR())
         * - region_end (ADDR()+SIZEOF())
         *
         * The bss array includes:
         * - region_begin (ADDR())
         * - region_end (ADDR()+SIZEOF())
         *
         * WARNING: It is mandatory that the regions are word aligned, 
         * since the initialisation code works only on words.
         */

        __data_regions_array_start = .;

        LONG(LOADADDR(.data));
        LONG(ADDR(.data));
        LONG(ADDR(.data)+SIZEOF(.data));

        __data_regions_array_end = .;

        __bss_regions_array_start = .;

        LONG(ADDR(.bss));
        LONG(ADDR(.bss)+SIZEOF(.bss));

        __bss_regions_array_end = .;

        /* End of memory regions initialisation arrays. */

        /*
         * These are the old initialisation sections, intended to contain
         * naked code, with the prologue/epilogue added by crti.o/crtn.o
         * when linking with startup files. The standalone startup code
         * currently does not run these, better use the init arrays below.
         */
        KEEP(*(.init))
        KEEP(*(.fini))

        . = ALIGN(4);

        /*
         * The preinit code, i.e. an array of pointers to initialisation 
         * functions to be performed before constructors.
         */
        PROVIDE_HIDDEN (__preinit_array_start = .);

        /*
         * Used to run the SystemInit() before anything else.
         */
        KEEP(*(.preinit_array_sysinit .preinit_array_sysinit.*))

        /* 
         * Used for other platform inits.
         */
        KEEP(*(.preinit_array_platform .preinit_array_platform.*))

        /*
         * The application inits. If you need to enforce some order in 
         * execution, create new sections, as before.
         */
        KEEP(*(.preinit_array .preinit_array.*))

        PROVIDE_HIDDEN (__preinit_array_end = .);

        . = ALIGN(4);

        /*
         * The init code, i.e. an array of pointers to static constructors.
         */
        PROVIDE_HIDDEN (__init_array_start = .);
        KEEP(*(SORT(.init_array.*)))
        KEEP(*(.init_array))
        PROVIDE_HIDDEN (__init_array_end = .);

        . = ALIGN(4);

        /*
         * The fini code, i.e. an array of pointers to static destructors.
         */
        PROVIDE_HIDDEN (__fini_array_start = .);
        KEEP(*(SORT(.fini_array.*)))
        KEEP(*(.fini_array))
        PROVIDE_HIDDEN (__fini_array_end = .);

    } >FLASH


    /*
     * For some STRx devices, the beginning of the startup code
     * is stored in the .flashtext section, which goes to FLASH.
     */
    .flashtext : ALIGN(4)
    {
        *(.flashtext .flashtext.*)  /* Startup code */
    } >FLASH


    /*
     * The program code is stored in the .text section, 
     * which goes to FLASH.
     */
    .text : ALIGN(4)
    {
        *(.text .text.*)            /* all remaining code */

        /* read-only data (constants) */
        *(.rodata .rodata.* .constdata .constdata.*)        

        *(vtable)                   /* C++ virtual tables */

        KEEP(*(.eh_frame*))

        /*
         * Stub sections generated by the linker, to glue together 
         * ARM and Thumb code. .glue_7 is used for ARM code calling 
         * Thumb code, and .glue_7t is used for Thumb code calling 
         * ARM code. Apparently always generated by the linker, for some
         * architectures, so better leave them here.
         */
        *(.glue_7)
        *(.glue_7t)

    } >FLASH

    /* ARM magic sections */
    .ARM.extab : ALIGN(4)
    {
       *(.ARM.extab* .gnu.linkonce.armextab.*)
    } > FLASH

    . = ALIGN(4);
    __exidx_start = .;      
    .ARM.exidx : ALIGN(4)
    {
       *(.ARM.exidx* .gnu.linkonce.armexidx.*)
    } > FLASH

    __exidx_end = .;

    . = ALIGN(4);
    _etext = .;
    __etext = .;


    /* 
     * This address is used by the startup code to 
     * initialise the .data section.
     */
    _sidata = LOADADDR(.data);

    .ConfigData : ALIGN(4)
    {
        KEEP(*(.ConfigData));
        PROVIDE (ConfigAddress = ABSOLUTE(.));
    } > CONFIG

    /*
     * The initialised data section.
     *
     * The program executes knowing that the data is in the RAM
     * but the loader puts the initial values in the FLASH (inidata).
     * It is one task of the startup to copy the initial values from 
     * FLASH to RAM.
     */
    .data : ALIGN(4)
    {
        FILL(0xFF)
        /* This is used by the startup code to initialise the .data section */
        _sdata = . ;            /* STM specific definition */
        __data_start__ = . ;
        *(.data_begin .data_begin.*)

        *(.data .data.*)
        *(.data_end .data_end.*)
        . = ALIGN(4);

        /* This is used by the startup code to initialise the .data section */
        _edata = . ;            /* STM specific definition */
        __data_end__ = . ;

    } >RAM AT>FLASH



    /* The primary uninitialised data section. */
    .bss (NOLOAD) : ALIGN(4)
    {
        __bss_start__ = .;      /* standard newlib definition */
        _sbss = .;              /* STM specific definition */
        *(.bss_begin .bss_begin.*)

        *(.bss .bss.*)
        *(COMMON)

        *(.bss_end .bss_end.*)
        . = ALIGN(4);
        __bss_end__ = .;        /* standard newlib definition */
        _ebss = . ;             /* STM specific definition */
    } >RAM

    .noinit (NOLOAD) : ALIGN(4)
    {
        _noinit = .;

        *(.noinit .noinit.*) 

         . = ALIGN(4) ;
        _end_noinit = .;   
    } > RAM


    /* Mandatory to be word aligned, _sbrk assumes this */
    PROVIDE ( end = _end_noinit ); /* was _ebss */
    PROVIDE ( _end = _end_noinit );
    PROVIDE ( __end = _end_noinit );
    PROVIDE ( __end__ = _end_noinit );

    /*
     * Used for validation only, do not allocate anything here!
     *
     * This is just to check that there is enough RAM left for the Main
     * stack. It should generate an error if it's full.
     */
    ._check_stack : ALIGN(4)
    {
        . = . + _Minimum_Stack_Size ;
    } >RAM

    /* After that there are only debugging sections. */
    /* This can remove the debugging information from the standard libraries */    

    DISCARD :
    {
        libc.a ( * )
        libm.a ( * )
        libgcc.a ( * )
    }

    /* Stabs debugging sections.  */
    .stab          0 : { *(.stab) }
    .stabstr       0 : { *(.stabstr) }
    .stab.excl     0 : { *(.stab.excl) }
    .stab.exclstr  0 : { *(.stab.exclstr) }
    .stab.index    0 : { *(.stab.index) }
    .stab.indexstr 0 : { *(.stab.indexstr) }
    .comment       0 : { *(.comment) }
    /*
     * DWARF debug sections.
     * Symbols in the DWARF debugging sections are relative to the beginning
     * of the section so we begin them at 0.  
     */
    /* DWARF 1 */
    .debug          0 : { *(.debug) }
    .line           0 : { *(.line) }
    /* GNU DWARF 1 extensions */
    .debug_srcinfo  0 : { *(.debug_srcinfo) }
    .debug_sfnames  0 : { *(.debug_sfnames) }
    /* DWARF 1.1 and DWARF 2 */
    .debug_aranges  0 : { *(.debug_aranges) }
    .debug_pubnames 0 : { *(.debug_pubnames) }
    /* DWARF 2 */
    .debug_info     0 : { *(.debug_info .gnu.linkonce.wi.*) }
    .debug_abbrev   0 : { *(.debug_abbrev) }
    .debug_line     0 : { *(.debug_line) }
    .debug_frame    0 : { *(.debug_frame) }
    .debug_str      0 : { *(.debug_str) }
    .debug_loc      0 : { *(.debug_loc) }
    .debug_macinfo  0 : { *(.debug_macinfo) }
    /* SGI/MIPS DWARF 2 extensions */
    .debug_weaknames 0 : { *(.debug_weaknames) }
    .debug_funcnames 0 : { *(.debug_funcnames) }
    .debug_typenames 0 : { *(.debug_typenames) }
    .debug_varnames  0 : { *(.debug_varnames) }    
}

mem.ld

MEMORY
{
  RAM       (xrw)       : ORIGIN = 0x20000000,                      LENGTH = 0x4000
  FLASH     (rx)        : ORIGIN = 0x08000000,                      LENGTH = 0x1F800
  CONFIG    (rx)        : ORIGIN = ORIGIN(FLASH) + LENGTH(FLASH),   LENGTH = 0x800
  FLASHB1   (rx)        : ORIGIN = 0x00000000,                      LENGTH = 0
  EXTMEMB0  (rx)        : ORIGIN = 0x00000000,                      LENGTH = 0
  EXTMEMB1  (rx)        : ORIGIN = 0x00000000,                      LENGTH = 0
  EXTMEMB2  (rx)        : ORIGIN = 0x00000000,                      LENGTH = 0
  EXTMEMB3  (rx)        : ORIGIN = 0x00000000,                      LENGTH = 0
  MEMORY_ARRAY (xrw)    : ORIGIN = 0x00000000,                      LENGTH = 0
}

更新2 发生错误时正在链接的相关代码在Visual Studio中链接

更新3 新鲜的链接文件,带有以下标志的错误仍然存​​在:

arm-none-eabi-g++ -mcpu=cortex-m0 -march=armv6-m -mthumb -Os -fmessage-length=0 -ffreestanding -flto -Wunused -Wuninitialized -Wall -Wextra  -g -T "../ldscripts/mem.ld" -T "../ldscripts/sections.ld" -T "../ldscripts/libs.ld" -nostartfiles -Xlinker --gc-sections -L"../ldscripts" -Wl,-Map,"uSupply Firmware V1_0.map" --specs=nano.specs -o "uSupply Firmware V1_0.elf"  ./system/src/stm32f0-stdperiph/stm32f0xx_adc.o ./system/src/stm32f0-stdperiph/stm32f0xx_can.o ./system/src/stm32f0-stdperiph/stm32f0xx_cec.o ./system/src/stm32f0-stdperiph/stm32f0xx_comp.o ./system/src/stm32f0-stdperiph/stm32f0xx_crc.o ./system/src/stm32f0-stdperiph/stm32f0xx_crs.o ./system/src/stm32f0-stdperiph/stm32f0xx_dac.o ./system/src/stm32f0-stdperiph/stm32f0xx_dbgmcu.o ./system/src/stm32f0-stdperiph/stm32f0xx_dma.o ./system/src/stm32f0-stdperiph/stm32f0xx_exti.o ./system/src/stm32f0-stdperiph/stm32f0xx_flash.o ./system/src/stm32f0-stdperiph/stm32f0xx_gpio.o ./system/src/stm32f0-stdperiph/stm32f0xx_i2c.o ./system/src/stm32f0-stdperiph/stm32f0xx_iwdg.o ./system/src/stm32f0-stdperiph/stm32f0xx_misc.o ./system/src/stm32f0-stdperiph/stm32f0xx_pwr.o ./system/src/stm32f0-stdperiph/stm32f0xx_rcc.o ./system/src/stm32f0-stdperiph/stm32f0xx_rtc.o ./system/src/stm32f0-stdperiph/stm32f0xx_spi.o ./system/src/stm32f0-stdperiph/stm32f0xx_syscfg.o ./system/src/stm32f0-stdperiph/stm32f0xx_tim.o ./system/src/stm32f0-stdperiph/stm32f0xx_usart.o ./system/src/stm32f0-stdperiph/stm32f0xx_wwdg.o  ./system/src/newlib/_cxx.o ./system/src/newlib/_exit.o ./system/src/newlib/_sbrk.o ./system/src/newlib/_startup.o ./system/src/newlib/_syscalls.o ./system/src/newlib/assert.o  ./system/src/diag/Trace.o ./system/src/diag/trace_impl.o  ./system/src/cortexm/_initialize_hardware.o ./system/src/cortexm/_reset_hardware.o ./system/src/cortexm/exception_handlers.o  ./system/src/cmsis/system_stm32f0xx.o ./system/src/cmsis/vectors_stm32f0xx.o  ./src/peripherals/Interrupt.o  ./src/_write.o ./src/main.o 

1 个答案:

答案 0 :(得分:3)

该错误的原因是在Libiberty的实现中使用了VLA。 VLA是放置在堆栈上的数据结构,当程序中包含大量符号时,VLA会超出应用程序堆栈限制。在Libiberty中,有一个标志可以避免使用VLA,结果是使用了alloca。此分配发生在堆栈上,发生同样的问题。

GCC 7.2比GCC 8.2生成更多的符号信息。

解决方案是三折:

  1. 在linux上,使用ulimit -s unlimited并从同一终端窗口启动GCC7.2,ulimit仅影响子进程。
  2. 在Windows上,使用Windows的不同堆栈大小重新编译GCC ld.exe,editbin在ld.exe上无法正常工作。
  3. Windows / Linux,升级到GCC 8.2,此版本的编译器带有符号的效果要好得多,在这种情况下问题可以自行解决。

Tamar Christina随心所欲地提出了这个问题,我怀疑就像Linux内核一样,VLA也会从实现中删除。