我正在尝试在网络摄像头的实时Feed上运行我的图像处理算法。 我希望它在多处理模块的并行进程中运行,我该如何实现呢? 这是我当前没有并行编码的代码:
from cv2 import VideoCapture , imshow , waitKey ,imwrite
import numpy as np
from time import time
def greenify (x):
return some_value
skip = 4
video = VideoCapture(0)
video.set(3,640/skip)
video.set(4,480/skip)
total = 0
top_N = 100
while True:
image = video.read()[1]
if waitKey(1) == 27:
break
arr = array([list(map(greenify,j)) for j in image])
result = unravel_index(argpartition(arr,arr.size-top_N,axis=None)[-top_N:], arr.shape)
centre = skip*np.median(result[0]) , skip*np.median(result[1])
imshow('Feed', image)
print('Time taken:',total)
video.release()
答案 0 :(得分:2)
基本上,我已经修改了您的代码,将其设置为一个函数,然后并行调用它。在代码中的任意位置调用bob.start(),并在几毫秒内调用并行代码即可
import numpy as np
from cv2 import VideoCapture
from multiprocessing import Process, Manager
import multiprocessing as mp
def getcors():
skip = 4
top_N = 100
video = VideoCapture(0)
video.set(3,640/skip)
video.set(4,480/skip)
while True:
frame = video.read()[1]
arr = np.array([list(map(greenify,j)) for j in frame])
result = np.unravel_index(np.argpartition(arr,arr.size-top_N,axis=None)[-top_N:], arr.shape)
centre = skip * np.median(result[1]) , skip*np.median(result[0])
bob = Process(target = getcors)