我正在尝试使用深度学习代码来处理包含1,12,120张图像的数据集。我的代码执行以下操作:
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import imageio
from os import listdir
import skimage.transform
import pickle
import sys, os
from sklearn.preprocessing import MultiLabelBinarizer
def get_labels(pic_id):
labels = meta_data.loc[meta_data["Image Index"]==pic_id,"Finding Labels"]
return labels.tolist()[0].split("|")
#Loading Data
meta_data = pd.read_csv(data_entry_path)
bbox_list = pd.read_csv(bbox_list_path)
with open(train_txt_path, "r") as f:
train_list = [ i.strip() for i in f.readlines()]
with open(valid_txt_path, "r") as f:
valid_list = [ i.strip() for i in f.readlines()]
label_eight = list(np.unique(bbox_list["Finding Label"])) + ["No Finding"]
# transform training images
print("training example:",len(train_list))
print("take care of your RAM here !!!")
train_X = []
for i in range(len(train_list)):
image_path = os.path.join(image_folder_path,train_list[i])
img = imageio.imread(image_path)
if img.shape != (1024,1024): # there some image with shape (1024,1024,4) in training set
img = img[:,:,0]
img_resized = skimage.transform.resize(img,(256,256)) # or use img[::4] here
train_X.append((np.array(img_resized)/255).reshape(256,256,1))
if i % 3000==0:
print(i)
train_X = np.array(train_X)
np.save(os.path.join(data_path,"train_X_small.npy"), train_X)
# transform validation images
print("validation example:",len(valid_list))
valid_X = []
for i in range(len(valid_list)):
image_path = os.path.join(image_folder_path,valid_list[i])
img = imageio.imread(image_path)
if img.shape != (1024,1024):
img = img[:,:,0]
img_resized = skimage.transform.resize(img,(256,256))
# if img.shape != (1024,1024):
# train_X.append(img[:,:,0])
# else:
valid_X.append((np.array(img_resized)/255).reshape(256,256,1))
if i % 3000==0:
print(i)
valid_X = np.array(valid_X)
np.save(os.path.join(data_path,"valid_X_small.npy"), valid_X)
# process label
print("label preprocessing")
train_y = []
for train_id in train_list:
train_y.append(get_labels(train_id))
valid_y = []
for valid_id in valid_list:
valid_y.append(get_labels(valid_id))
encoder = MultiLabelBinarizer()
encoder.fit(train_y+valid_y)
train_y_onehot = encoder.transform(train_y)
valid_y_onehot = encoder.transform(valid_y)
train_y_onehot = np.delete(train_y_onehot, [2,3,5,6,7,10,12],1) # delete out 8 and "No Finding" column
valid_y_onehot = np.delete(valid_y_onehot, [2,3,5,6,7,10,12],1) # delete out 8 and "No Finding" column
with open(data_path + "/train_y_onehot.pkl","wb") as f:
pickle.dump(train_y_onehot, f)
with open(data_path + "/valid_y_onehot.pkl","wb") as f:
pickle.dump(valid_y_onehot, f)
with open(data_path + "/label_encoder.pkl","wb") as f:
pickle.dump(encoder, f)
这是我的代码我的系统配置:英特尔i7-7700HQ,16GB Ram,256GB固态硬盘,GTX 1050 4GB
有没有办法这样分割我的数据集并再次写入同一文件?我还发布了我作为屏幕快照Error From Powershell after executing the code for 30mins
遇到的错误我还在我的系统64位版本中使用python3
是否可以拆分1,12,120张图像并将其分批处理?如果是,怎么办?